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Main findings 

● Kinshasa is prone to frequent and deadly flooding during the rainy season (October to May). 
It is built next to the Congo River and several rivers run directly through the city, including 
the Ndjili. With close to 18 million residents, Kinshasa is one of the most populated cities in 
the world. Around 70% of the urban population lives in dense informal housing, much of it in 
areas prone to floods and landslides. In 2022, more than 100 people died following a similarly 
heavy downpour.  

● From a hazard point of view, the event as observed in 2025 is not rare. Similar periods of 
heavy rainfall are expected to occur on average every second year in today’s climate, which 
has been warmed by 1.3°C, due to the burning of fossil fuels.  

● To assess whether such heavy rainfall events would have been more or less frequent in the 
past we assess three gridded data products, as well as two weather stations located in 
Kinshasa. All three gridded datasets show very different trends, including one that suggests 
climate change made the event much more likely, while two show no change. The station data 
is only available until 2023, so does not include the event, but shows different events and 
trends in the overlapping years than all three gridded products. 

● Climate models also show very varying trends, including a strong increase, no trends and a 
decreasing trend in heavy precipitation over the region since the pre industrial climate. 
However, this is no indication that there is no trend, as the discrepancies are very high.  

● The scarcity and inaccessibility of meteorological data, as well as inadequate performance of 
climate models means that we cannot confidently evaluate the role of climate change in the 
rainfall that led to flooding. Our previous study on a 2023 flood in Eastern DRC was similarly 
inconclusive for the same reasons, highlighting an ongoing need to invest in weather 
monitoring stations and climate science to understand changing weather extremes in Central 
Africa.  

● The IPCC projects an increase in heavy rainfall across Central Africa, particularly over short 
timescales of five days or less. Several data sources—including two weather stations—and 
about half of the climate models analyzed indicate a notable rise in heavy rainfall for both 
Kinshasa and the broader study region. Therefore, a future increase in heavy rainfall due to 
climate change is a strong possibility. 

● Since gaining independence in 1960, the Democratic Republic of the Congo (DRC) has faced 
decades of political instability and conflict. Despite being one of the most mineral-rich 
countries in the world—with over half of the global cobalt supply, a key element in batteries 
and the global transition to renewable energy—the DRC remains the fourth poorest country 
globally. 

● Prolonged conflict, particularly in the eastern regions (see WWA’s other study in the DRC), 
continues to severely impact the country. In recent months, violence has intensified, resulting 
in thousands of deaths and displacing nearly seven million people. These ongoing crises in the 
east could have far-reaching ripple effects, such as increasing migration flows into cities.  

● Floods in Kinshasa, which occur frequently and often result in high death tolls, highlight the 
urgent need to build resilience to heavy rainfall events. This urgency is further amplified by 
the city’s rapid growth: Kinshasa’s population is projected to double to nearly 40 million 
within the next 20 years.  

https://www.worldweatherattribution.org/limited-data-prevent-assessment-of-role-of-climate-change-in-deadly-floods-affecting-highly-vulnerable-communities-around-lake-kivu/
https://www.worldweatherattribution.org/limited-data-prevent-assessment-of-role-of-climate-change-in-deadly-floods-affecting-highly-vulnerable-communities-around-lake-kivu/


● Flood risk is amplified by rapid population growth, limited infrastructure coverage, and high 
reliance on informal systems - particularly in areas where critical services such as drainage, 
healthcare, and electricity remain inconsistent or difficult to access. Drainage is frequently 
blocked by waste pollution, and there is limited waste management services and sewage 
maintenance, increasing flooding. 

● While progress is being made, for example, the drafting of a new law on the DRC's town 
planning and construction code that could reduce flood exposure, more comprehensive efforts 
are needed to reduce the impacts of very devastating, but common floods. Adaptation finance 
will be critical to support the country’s flood adaptation measures as population growth in 
Kinshasa and surrounding cities continues.  

1 Introduction 

The torrential rains between April 4 and 7, Kinshasa—the capital of the Democratic Republic of the 
Congo (DRC)—caused severe flooding, landslides and silting that resulted in significant casualties 
and damage. However, the local station (Ndjili)  reported around 75.2 mm of rainfall at the Airport on 
a single event that started on the night of 4th April 2025 going to the morning of 5th April 2025.  The 
disaster was triggered when the N’Djili and Nsuenge rivers east of the city, which runs through the 
city of approximately 17.8 million people, burst its banks on April 5–6, submerging major roads and 
hundreds of buildings (Aljazeera, 2025). The bridge over the Ndjili River in Debonhomme was 
submerged by up to 3 meters, rendering it impassable. Homes near the river and in surrounding 
neighborhoods were inundated, with private boats used for evacuations. To note is that, the river's 
rising levels were partly due to upstream runoff from Central Kongo Province, even in the absence of 
local rainfall. As of April 7, at least 33 people had been reported dead, 46 injured,  1,425 displaced 
and 3,450,412 affected as reported by the Kinshasa Provincial government. Thirteen (Matete, Kisenso, 
Ngaba, Limete, Mont Ngafula, Ndjili, Kalamu, Bumbu, Ngaliema, Selembao, Makala, Lemba and 
Masina) of Kinshasa’s 24 municipalities were affected, with flooding cutting off access to over half of 
the city (MSN, 2025). In addition, there were several silted up houses which led to much vulnerability 
of communities.   
 
The floods also damaged critical infrastructure, including the main road to the airport—which links 
Kinshasa to the rest of the country. Access to clean drinking water has been disrupted in at least 16 
communes, as water facilities were impacted by the floodwaters. In response, the government 
established at least four emergency shelters, which housed hundreds of displaced families.  This latest 
disaster comes as the country continues to face a major humanitarian crisis in its eastern region, more 
than 2,600 kilometers from Kinshasa, where ongoing conflict with M23 rebels has displaced hundreds 
of thousands (Aljazeera, 2025). It also follows a similarly devastating flood event in 2022, which 
claimed the lives of at least 100 people in Kinshasa (IFRC, 2022).  

Kinshasa has a hot, humid tropical climate with a rainy season extending from late September to late 
May. Peak rainfall typically occurs in November and April, with an annual average of over 100 rainy 
days. The heaviest downpours (over 50 mm) are concentrated in March, April, and 
November—accounting for more than half of the year’s extreme rain events. November is usually the 
wettest month, often preceding peak water levels in the Congo River. The city's geography—situated 
in a lowland plain surrounded by hills—contributes to significant runoff during heavy rains, especially 
on its asphalt-covered surfaces. Rainfall is influenced by both regional and local atmospheric 

https://www.aljazeera.com/gallery/2025/4/8/death-toll-from-kinshasa-floods-climbs-to-33-amid-evacuations
https://www.msn.com/en-za/news/other/congo-s-capital-kinshasa-faces-crisis-as-flooding-death-toll-rises-to-33/ar-AA1CvE1M
https://www.aljazeera.com/news/2025/3/24/mapping-the-human-toll-of-the-conflict-in-dr-congo
https://go.ifrc.org/emergencies/6298/details


dynamics. Moisture-laden southwest monsoon winds, entering from the Gulf of Guinea, gain 
humidity from rivers and lakes as they pass through Equateur and Bandundu provinces before 
reaching Kinshasa. Southeastern trade winds also pick up moisture over Bandundu, with both wind 
systems converging over Kinshasa to produce thunderstorms and intense rainfall. Local weather is 
further shaped by thermal contrasts between the Congo River, surrounding plains, and nearby hills. 
These differences generate convective movements and breezes that lead to cloud formation and 
afternoon thunderstorms, particularly around 4 PM when temperatures peak. Despite broad seasonal 
patterns, rainfall across Kinshasa can be highly localized due to complex convection zones. Studies 
have shown that it may rain in one part of the city while another remains dry. Multiple sources of 
convection—including airflows from Brazzaville, synoptic squall lines, and systems from 
Angola—contribute to this variability. Additionally , the rainfall is influenced by the interactions 
between Indian and Atlantic Ocean moisture influx through the Mascarene and St Helena quasi 
permanent anticyclones respectively. The moisture influx enters the DRC over the east from the 
Indian Ocean  and over the west from the Atlantic Ocean. In addition, the Madden Julian Oscillations 
(MJO) as well as the Congo forest play a big role in local circulations and enhanced rainfall at 
intraseasonal timescale. The cyclic MJO with a period reaching to 45 days modulates both the 
March-May and September - December over the country.   

Between 1986 and 2024, Kinshasa/N’Djili station recorded an average of 1,530 mm of rain annually 
over approximately 112 rainy days. Most rainfall (about 70%) occurs in the form of thunderstorms, 
often with damaging intensity. In recent decades, Kinshasa has experienced numerous extreme rainfall 
events resulting in severe flooding, landslides, and loss of life. Notable events include the deadly 
floods of 1961–62, 1973, 1990, 1994, 2001, and most recently in January 2022, when electrocution 
from a downed power line highlighted the risks posed by intense storms. These recurrent events 
underscore the growing threat of extreme rainfall to lives, infrastructure, and economic stability in the 
city and across the DRC.  

 

 

1.1 Rainfall Extremes in Central Africa  

Central Africa, home to the Congo Basin—the world's second-largest river basin and rainforest after 
the Amazon—is also known for the planet’s most intense thunderstorms. According to IPCC, 2021, 
DRC has observed an increase in heavy rainfall since the 1950s, with low confidence (due to limited 
agreement) in human contribution to the observed change.  Between 1979 and 2014, a significant 
drying trend was observed in the April–May–June (AMJ) rainfall season. However, a return to wetter 
conditions was recorded during 2016–2020, comparable to the earlier wet phase of 1979–1993 
(Nicholson,et al., 2022). Interestingly, the meteorological drivers behind these two wet periods 
differed. The 1979–1993 wet phase was linked to changes in the tropical Walker circulation, moisture 
flux dynamics, and Pacific sea surface temperatures (SSTs), characterized by a warmer central/eastern 
Pacific and a cooler western Pacific. This produced a weaker-than-average trans-Pacific SST gradient. 
In contrast, the 2016–2020 wet period occurred during generally higher SSTs across the Pacific 
compared to both earlier phases (Nicholson et al., 2022). In northeastern DRC, the annual rainfall 
shows a slight upward trend overall, with seasonal increases during March–May (MAM) and 
August–November (ASON), while little to no change was observed during December–February (DJF) 

https://iopscience.iop.org/article/10.1088/1748-9326/ac61c4/meta


and June–July (JJ) (Posite et al., 2024). Future Projections indicate increases in total precipitation are 
expected in the north, east, and western edges of the Congo Basin, regardless of scenario or time 
period. This is partly attributed to intensified zonal moisture divergence in the upper atmosphere. 
However, along the wetter Guinea Coast and much of Central Africa, models suggest only minor 
changes in total rainfall but a reduction in the duration of wet spells. 
  

1.2 Data gaps and inconsistencies in gridded observational products  

Accurately quantifying changes in precipitation and its associated uncertainty remains a challenge, 
particularly across the Central African region, where rain gauge networks are sparse and unevenly 
distributed. Most of these stations are typically situated in urban areas, airports, or along major roads, 
with very few located in rural regions (Dinku, 2019). Generally, there has been a significant decline in 
reported rainfall measurements across the continent in the recent past (Muthoni, 2020). Notably, 
during the early 2010s, weather station reports from much of the DRC—which spans over 2 million 
km²—were no longer transmitted to the Global Telecommunication System, leading to huge data 
gaps. New advancements in science and technology have enable development of several global 
satellite and reanalysis-based rainfall products, aimed at addressing the limitations of in situ gauge 
observations.  However these products differ widely in terms of their underlying algorithms, input 
data sources, latency, record length, spatial and temporal resolution, and intended applications 
(Mekonnen et al., 2023). Mekonnen et al. (2023) notes that no single rainfall product consistently 
performs well across all temporal and spatial scales. As expected, rain gauge-merged products contain 
smaller error compared to the satellite-only products (McCollum et al., 2000; Awange et al., 2016). 
Intercomparison studies by Awange et al., 2015  and Camberlin et al, 2019 on seven satellite-based 
gridded rainfall products—ARC, CHIRPS, CMORPH, PERSIANN, TAPEER, TARCAT, and 
TMPA—was conducted over Central Africa against 154 daily rain-gauge stations compiled from 
global datasets, national meteorological services, and monitoring initiatives show that on average, 
MSWEP, IMERG, and CHIRPS showed strong performance at the daily timescale—in that 
order—while RFE, ARC, and CHIRPS were more reliable at monthly and annual scales. Figure 1 
shows the time series of maximum cumulative 7-day rainfall from station observations, ERA5, 
CHIRPS, and TAMSAT. The results show clear discrepancies among the datasets, indicating limited 
agreement.  
 
 
 

 
Figure 1. Maximum cumulative 7-day rainfall as depicted by station observations at two locations in 
Kinshasa city in DRC (a) N’Djili and  (b) Binza, along with the respective estimates at the nearest 

https://link.springer.com/article/10.1007/s12040-024-02308-0
https://www.sciencedirect.com/science/article/abs/pii/B9780128159989000075?via%3Dihub
https://ieeexplore.ieee.org/document/9099395
https://www.sciencedirect.com/science/article/pii/S221458182300201X#bib23
https://rmets.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/joc.4346?download=true
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3547?saml_referrer=


grid from the reanalysis and satellite products used in the study, namely,  ERA5, CHIRPS, and 
TAMSAT. 

1.3 Event Definition 

Kinshasa (see red dot in Figure 2), located in a low-lying plain surrounded by hills and drained by 
numerous local rivers—including the Nsele and Ndjili, both major tributaries of the Congo 
River—experienced the most severe impacts from the rainfall event. However, the heavy rainfall 
extended beyond the city, affecting the surrounding and central regions of the Democratic Republic of 
the Congo. The N'Djili river basin spans approximately 2,000 km² (15°9'–15°39'E,  4°22'–4°59'S) 
from the Central Kongo province to the city of Kinshasa (Luboya, 2002). It consists of two distinct 
sections, an upper course encompassing the rural territories of Kasangulu and Madimba, and a lower 
course covering about 625 km² (about 31.2% of the basin) that feeds the city of Kinshasa.. The N'Djili 
river originates in the hills of Bas-Congo and flows south to north through Kinshasa, emptying into 
the Congo River in a delta with anastomosing arms. It forms a natural boundary between eastern 
Kinshasa and the rest of the city, alongside the N'sele River, delineating an arc-shaped plain 4 to 6 km 
wide. The riverbanks, now heavily urbanized, support dwellings, market gardens, and livestock farms. 
The alluvial valleys of the N'Djili system, namely, Lukaya, Matete, Kwambila, Imbu, Bimunsaka, and 
Kimbasala, play a vital economic role in agriculture and urban development. Therefore to better 
capture the rainfall associated with the widespread flooding, we focused our analysis on river basins 
in and around Kinshasa, extending into the central part of the country (see red outline in Figure 2).  
 
Given that flood events can be triggered by either short-duration, high-intensity rainfall leading to 
flash floods, or by prolonged multi-day rainfall causing flooding through soil saturation, we examine 
the maximum consecutive 7-day rainfall during the February–May (FMAM) season (hereafter 
Feb-May RX7day) to capture a range of flood-inducing rainfall processes. The study region used is 
relatively homogeneous in both elevation and climatological characteristics (not shown). 
 

 
Figure 2. (a) 7- day (30th March - 5th April) cumulative rainfall over Central Africa region, 
encompassing the Democratic Republic of Congo; (b) Rainfall on the 4th of April over region based 
TAMSAT dataset. The red outline shows the study region.  
 



In this report, we study the influence of anthropogenic climate change by comparing the likelihood 
and intensity of similar Feb-May RX7day values at present with those in a 1.3 °C cooler climate. We 
also extend this analysis into the future by assessing the influence of a further 1.3 °C of global 
warming from present. This is in line with the latest Emissions Gap Report from the United Nations 
Environment Programme, which shows that the world is on track for at least 2.6 °C temperature rise 
given currently implemented policies (UNEP, 2024).  
 

2 Data and methods 

2.1 Observational data 

We utilise daily data for three gridded observational datasets and two in situ stations :  
(i) Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). CHIRPS 
(Climate Hazards Group InfraRed Precipitation with Station data; Funk et al., 2015b). CHIRPS is the 
state of the art observational daily dataset developed by the UC Santa Barbara Climate Hazards Group  
called “Climate Hazards Group InfraRed Precipitation with Station data” available for the period 
1981–present. For this dataset, we utilised daily rainfall data from 1981-2024. 
 
(ii) Tropical Applications of Meteorology using SATellite and ground based observations 
(TAMSAT). TAMSAT is a daily rainfall dataset based on high-resolution thermal-infrared 
observations generated by breaking down 5-day total TAMSAT rainfall estimates into daily 
increments, achieved through the utilisation of daily cold cloud duration information. We used the 
daily rainfall dataset available from 1983 to the present.  
(iii)  ERA5 (5th Generation product from the European Centre for Medium-Range Weather 
Forecasts (ECMWF). ERA5 reanalysis product begins in the year 1950 (Hersbach et al., 2020). We 
use monthly rainfall, maximum and minimum temperature from this product. It should be noted that 
the variables from ERA5 are not directly assimilated, but these are generated by atmospheric 
components of the Integrated Forecast System (IFS)  modelling system. Due its low performance in 
the pre-satellite period, we utilised only data from 1983 onwards from this dataset   
(iv) Weather Station data from NDjili and Binza meteorological stations located at 15°26’ E 4°23’ S 
and 15° 15' E 04° 22' S, respectively and  available from 1961 to 2023. 
 
All gridded datasets were used to define the event, assess model performance, and carry out the 
attribution analysis. For consistency across gridded datasets, we use data spanning from 1983 to 2025, 
aligning with the start year of the TAMSAT record.  As a measure of anthropogenic climate change 
we use the (low-pass filtered) global mean surface temperature (GMST), where GMST is taken from 
the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Science 
(GISS) surface temperature analysis (GISTEMP, Hansen et al., 2010 and Lenssen et al. 2019). 

2.2 Model and experiment descriptions 

We use two multi-model ensembles from climate modelling experiments using very different framings 
(Philip et al., 2020): Sea Surface temperature (SST) driven global circulation high resolution models, 
coupled global circulation models and regional climate models. 
  

https://www.unep.org/resources/emissions-gap-report-2024
https://www.nature.com/articles/sdata201566
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3803
https://doi.org/10.1029/2010RG000345
https://doi.org/10.1029/2018JD029522
https://ascmo.copernicus.org/articles/6/177/2020/#section4


1. Coordinated Regional Climate Downscaling Experiment  (CORDEX)-Africa (0.44° 
resolution, AFR-44) multi-model ensemble (Nikulin et al., 2012), comprising of 18  
simulations resulting from pairings of  10 Global Climate Models (GCMs) and 6 Regional 
Climate Models (RCMs). These simulations are composed of historical simulations up to 
2005, and extended to the year 2100 using the RCP8.5 scenario.  

2. HighResMIP SST-forced model ensemble (Haarsma et al. 2016), the simulations for which 
span from 1950 to 2050. The SST and sea ice forcings for the period 1950-2014 are obtained 
from the 0.25° x 0.25° Hadley Centre Global Sea Ice and Sea Surface Temperature dataset 
that have undergone area-weighted regridding to match the climate model resolution. For the 
‘future’ time period (2015-2050), SST/sea-ice data are derived from RCP8.5 (CMIP5) data, 
and combined with greenhouse gas forcings from SSP5-8.5 (CMIP6) simulations. Sixteen 
models were evaluated for this study. 

 

2.3 Statistical methods 

Methods for observational and model analysis and for model evaluation and synthesis are used 
according to the World Weather Attribution Protocol, described in Philip et al., (2020), with 
supporting details found in van Oldenborgh et al., (2021), Ciavarella et al., (2021), Otto et al., (2024) 
and here. The key steps, presented in sections 3-6, are: (3) trend estimation from observations; (4) 
model validation; (5) multi-method multi-model attribution; and (6) synthesis of the attribution 
statement. In this report we analyse Feb-May RX7day averaged over the study region red-outlined in 
figure 2. For each time series we calculate the return period and intensity of the event under study for 
the 2025 GMST and for 1.3 C cooler GMST. This allows us to compare the climate of now and of the 
preindustrial past (1850-1900, based on the Global Warming Index), by calculating the probability 
ratio (PR; the factor-change in the event's probability) and change in intensity of the event. 
 
A nonstationary generalised extreme value (GEV) distribution is used to model the Feb-May RX7day. 
For precipitation, the distribution is assumed to scale exponentially with the covariates, with the 
dispersion (the ratio between the standard deviation and the mean) remaining constant over time. This 
formulation reflects the Clausius Clapeyron relation, which implies that precipitation scales 
exponentially with temperature (Trenberth et.al., 2003, O’Gorman and Schneider 2009). The 
statistical models are estimated as follows. The variable of interest is assumed to follow a GEV 
distribution in which the location and scale parameters vary with GMST:  
 

, 𝑋 ~ 𝐺𝐸𝑉(µ, σ,  ξ | µ
0
,  σ

0
, α, 𝑇)
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model parameters, with 
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For each time series we calculate the return period and intensity of the event under study for the 2025 
GMST and for 1.3 C cooler GMST: this allows us to compare the climate of now and of the 
preindustrial past (1850-1900, based on the Global Warming Index), by calculating the probability 
ratio (PR; the factor-change in the event's probability) and change in intensity of the event. 
  

3 Observational analysis: return period and trend  

3.1 Analysis of point station data and gridded data 

We estimate the return period of the 2025 event (Table 3.1) by fitting the statistical model described in 
2.3 above to each observational time series shown in figure 1. The datasets show a wide range of 
estimates for probability ratio and intensity change. For return periods, the datasets give an estimate of 
roughly 2 years (1.58 in TAMSAT; 2.48 in ERA5). This suggests that under the global warming level, 
heavy rains such as this one are expected to happen in today’s  world about once every 2 years. It is 
worth noting that for CHIRPS and stations, in which the data do not cover the event (i.e., upto 2024 
for CHIRPS and 2023 for stations), we estimate the magnitude of the events using the 2-year return 
period in the climate of 2025. Additionally, we use this same return period to assess changes in 
models. For changes in magnitudes, TAMSAT gives statistically significant increases and intensity 
i.e., 28% with lower bound of 18.69 and upper bound of 40.63%;  while ERA5 and station data give 
almost no change i.e., 0.10 % (lower bound -16.10 upper bound 18.06),    and positive increase albeit 
not statistically significant18.649 % (lower bound -15.106 upper bounds 70.399) and 8.79 % (lower 
bound -21.94 upper bound 42.69) respectively. CHIRPS shows a significant reduction in rainfall 
intensity. Overall, while we cannot definitively state that the heavy rainfall experienced in DRC 
between February and May 2025 is intensifying under the current climate, there is a strong possibility 
that climate change is increasing heavy rainfall in the region. 
 
Table 3.1:  Estimated return periods, change in probability ratio and magnitude of Feb-March 
Rx7day events over the study region in the three reanalysis datasets and two stations in the 
high-impact area (around Kinshasa). Blue shading indicates an increasing trend (thick blue for 
statistically significant increasing trends)  while orange indicates a decreasing trend.  
 

 
Dataset 

Event  GMST (Covariate) 

Magnitude 
(mm) 

Return period 
(95% C.I.) 

Probability Ratio 
(95% C.I.) 

Change in magnitude 
(%) (95% C.I.) 

TAMSAT 103.41 1.58 
(1.06.. 2.66) 

70.438 
(9.8105 ... inf) 

28.16 
(18.69.... 40.63) 

ERA5 82.518 2.48 
(1.36 ... 13.37) 

1.0125 
(0.087 ... inf) 

0.10  
(-16.10.. 18.06) 

CHIRPS 74.060 1.24 
(1.02 ... 1.79) 

0.80 
(0.55 ... 0.99) 

-11.82 
(-21.86 ... -0.65) 

N’Djili 164.84 2 1.95 18.649 

https://www.globalwarmingindex.org


 

4 Model evaluation  

In this section we show the results of the model evaluation for the assessed region. The climate 
models are evaluated against the observations in their ability to capture:  
1. Seasonal cycles: For this, we qualitatively compare the seasonal cycles based on model outputs 
against observations-based cycles (Figs A.2 & A.3). We discard the models that exhibit ill-defined 
peaks in their seasonal cycles. We also discard the model if the rainy season onset/termination varies 
significantly from the observations.  
2. Spatial patterns: Models that do not match the observations in terms of the large-scale 
precipitation patterns (Figs A.4 & A.5) are excluded.  
3. Parameters of the fitted statistical models. We discard the model if the model and observation 
parameters ranges do not overlap.  
 
The models are labelled as ‘good’,’reasonable’, or ’bad’ based on their performances in terms of the 
three criteria discussed above (Table 4.1). A model is given an overall rating of ‘good’ if it is rated 
‘good’ for all three characteristics. If there is at least one ‘reasonable’, then its overall rating will be 
‘reasonable’ and ‘bad’ if there is at least one ‘bad’. The tables show the model evaluation results. In 
this study, given the relatively large number of models available, only  

Table 4.1 Evaluation results of the climate models considered for attribution analysis of Feb-March 
RX7day.  For each model, the threshold for a 1-in-2-year event is shown, along with the best estimates 
of the Dispersion and Shape parameters are shown, along with 95% confidence intervals. 
Furthermore evaluation of the seasonal cycle and spatial pattern are shown in the appendix.  

Model / Observations Seasonal cycle Spatial pattern Sigma Shape parameter 

TAMSAT   
0.0570 (0.0420 ... 
0.0670) 0.021 (-0.28 ... 0.29) 

ERA5   
0.0820 (0.0580 ... 
0.109) -0.25 (-1.1 ... -0.010) 

CHIRPS   
0.0680 (0.0480 ... 
0.0800) -0.074 (-0.26 ... 0.13) 

CORDEX     

CanESM2_r1i1p1_SMHI-RCA4 
historical-rcp85 (1) good reasonable 

0.0818 (0.0617 ... 
0.0976) -0.33 (-0.54 ... -0.18) 

CNRM-CM5_r1i1p1_CLMcom-
CCLM4-8-17 historical-rcp86 
(1) reasonable good 0.113 (0.0840 ... 0.129) -0.14 (-0.41 ... 0.13) 

Station (1.25..4.95) (0.47..8.64) (-15.106..70.399) 

Kin Binza 
Station 

146.35 2 
(1.28..4.87) 

1.30 
(0.41..3.13) 

8.79 
(-21.94..42.69) 



CNRM-CM5_r1i1p1_SMHI-RC
A4 historical-rcp87 (1) reasonable reasonable 

0.0720 (0.0551 ... 
0.0850) -0.23 (-0.47 ... -0.058) 

CSIRO-Mk3-6-0_r1i1p1_SMHI-
RCA4 historical-rcp88 (1) bad bad 

0.0777 (0.0654 ... 
0.0877) -0.18 (-0.50 ... -0.053) 

EC-EARTH_r1i1p1_CLMcom-C
CLM4-8-17 historical-rcp89 (1) good bad 0.151 (0.120 ... 0.181) -0.28 (-0.60 ... -0.095) 

EC-EARTH_r1i1p1_KNMI-RAC
MO22T historical-rcp90 (1) bad reasonable 

0.0557 (0.0444 ... 
0.0653) -0.075 (-0.31 ... 0.097) 

EC-EARTH_r1i1p1_MPI-CSC-
REMO2009 historical-rcp91 (1) bad reasonable 

0.0686 (0.0554 ... 
0.0805) -0.24 (-0.42 ... -0.089) 

EC-EARTH_r1i1p1_SMHI-RCA
4 historical-rcp92 (1) good reasonable 

0.0752 (0.0588 ... 
0.0874) -0.26 (-0.54 ... -0.12) 

GFDL-ESM2M_r1i1p1_SMHI-R
CA4 historical-rcp93 (1) good good 

0.0812 (0.0664 ... 
0.0929) -0.21 (-0.40 ... -0.044) 

HadGEM2-ES_r1i1p1_CLMco
m-CCLM4-8-17 historical-rcp94 
(1) reasonable good 0.147 (0.117 ... 0.168) -0.11 (-0.30 ... 0.081) 

HadGEM2-ES_r1i1p1_KNMI-R
ACMO22T historical-rcp95 (1) bad reasonable 

0.0449 (0.0324 ... 
0.0529) -0.024 (-0.18 ... 0.24) 

HadGEM2-ES_r1i1p1_SMHI-R
CA4 historical-rcp96 (1) reasonable reasonable 

0.0779 (0.0653 ... 
0.0895) -0.28 (-0.50 ... -0.13) 

IPSL-CM5A-MR_r1i1p1_SMHI-
RCA4 historical-rcp97 (1) good reasonable 

0.0714 (0.0574 ... 
0.0824) -0.22 (-0.39 ... -0.096) 

MIROC5_r1i1p1_SMHI-RCA4 
historical-rcp98 (1) good good 

0.0592 (0.0491 ... 
0.0686) -0.39 (-0.62 ... -0.23) 

MPI-ESM-LR_r1i1p1_CLMcom-
CCLM4-8-17 historical-rcp99 
(1) good good 0.136 (0.108 ... 0.156) -0.22 (-0.50 ... -0.068) 

MPI-ESM-LR_r1i1p1_MPI-CSC
-REMO2009 historical-rcp100 
(1) bad good 

0.0671 (0.0561 ... 
0.0773) 0.010 (-0.20 ... 0.18) 

MPI-ESM-LR_r1i1p1_SMHI-RC
A4 historical-rcp85 (1) good good 

0.0774 (0.0655 ... 
0.0890) -0.38 (-0.84 ... -0.29) 

NorESM1-M_r1i1p1_SMHI-RC
A4 historical-rcp85 (1) reasonable reasonable 

0.0800 (0.0631 ... 
0.0921) -0.28 (-0.45 ... -0.10) 

HighResMIP     

CAM-MPAS-HR 
historicalSST-future (1) reasonable reasonable 0.171 (0.123 ... 0.204) -0.17 (-0.49 ... 0.023) 

CAM-MPAS-LR 
historicalSST-future (1) reasonable reasonable 0.191 (0.122 ... 0.240) -0.33 (-0.68 ... -0.083) 



CMCC-CM2-HR4 
historicalSST-future (1) bad bad 0.101 (0.0707 ... 0.120) -0.34 (-0.61 ... 0.032) 

CMCC-CM2-VHR4 
historicalSST-future (1) bad reasonable 0.128 (0.0872 ... 0.157) -0.28 (-0.75 ... -0.10) 

EC-Earth3P 
historicalSST-future (1) good reasonable 

0.0905 (0.0604 ... 
0.107) -0.59 (-0.88 ... -0.12) 

EC-Earth3P-HR 
historicalSST-future (1) good reasonable 

0.0906 (0.0633 ... 
0.111) -0.39 (-0.73 ... -0.096) 

FGOALS-f3-H 
historicalSST-future (1) reasonable reasonable 0.163 (0.0481 ... 0.191) -0.23 (-0.60 ... 3.9) 

HadGEM3-GC31-HM 
historicalSST-future (1) reasonable reasonable  0.147 (0.105 ... 0.177) -0.30 (-0.61 ... -0.15) 

HadGEM3-GC31-LM 
historicalSST-future (1) reasonable reasonable  0.157 (0.121 ... 0.188) -0.15 (-0.60 ... 0.092) 

HadGEM3-GC31-MM 
historicalSST-future (1) reasonable reasonable 0.152 (0.0898 ... 0.198) -0.43 (-0.76 ... 0.064) 

HiRAM-SIT-HR 
historicalSST-future (1) reasonable reasonable 

0.0842 (0.0616 ... 
0.101) 0.10 (-0.19 ... 0.43) 

HiRAM-SIT-LR 
historicalSST-future (1) bad reasonable 0.139 (0.105 ... 0.170) -0.38 (-0.82 ... -0.15) 

MPI-ESM1-2-HR 
historicalSST-future (1) good reasonable 0.146 (0.111 ... 0.182) -0.19 (-0.66 ... -0.0065) 

MPI-ESM1-2-XR 
historicalSST-future (1) good reasonable  0.125 (0.0910 ... 0.154) -0.11 (-0.39 ... 0.22) 

NICAM16-7S 
historicalSST-future (1) bad reasonable 

0.0921 (0.0660 ... 
0.118) -0.078 (-0.44 ... 0.18) 

NICAM16-8S 
historicalSST-future (1) bad reasonable  

0.0983 (0.0616 ... 
0.126) -0.28 (-0.65 ... 0.071) 

 

 



5 Multi-method multi-model attribution 

This section shows Probability Ratios and change in intensity ΔI between a past climate that is 1.3℃ 
cooler than now and the current climate for models that passed model evaluation and also includes the 
values calculated from the fits with observations. For the CORDEX-Africa ensemble we additionally 
show the results between the current climate and a future climate that is 1.3℃ warmer than now. 
 
Table 5.1. Event magnitude, probability ratio and change in intensity for 2-year return period for  
Feb-March RX7day for observational datasets and each model that passed the evaluation tests. (a) 
from pre-industrial climate to the present and (b) from the present to 3℃ above pre-industrial climate. 

Model / Observations 

Threshold 
for return 
period 2 yr 
(mm/7day) 

  

Probability ratio 
PR [-] 

Change in intensity 
ΔI [˚C] 

Probability ratio 
PR [-] 

Change in intensity 
ΔI [˚C] 

TAMSAT 103.41  70 (11 ... 2.1e+4) 28 (18 ... 41)   

ERA5 82.518 
1.0 (0.080 ... 
2.0e+3) 0.10 (-16 ... 18)   

CHIRPS 74.06 0.80 (0.55 ... 0.99) -12 (-22 ... -0.65)   

CanESM2_r1i1p1_SMH
I-RCA4 historical-rcp85 
(1) 78 0.85 (0.65 ... 1.3) -1.8 (-5.9 ... 2.0) 0.97 (0.86 ... 1.1) -0.32 (-1.4 ... 0.64) 

CNRM-CM5_r1i1p1_CL
Mcom-CCLM4-8-17 
historical-rcp85(1) 1.1e+2 1.4 (0.72 ... 8.8) 4.9 (-5.7 ... 24) 1.0 (0.83 ... 1.3) 0.53 (-2.5 ... 4.4) 

CNRM-CM5_r1i1p1_S
MHI-RCA4 
historical-rcp85(1) 77 0.72 (0.53 ... 2.0) -3.7 (-11 ... 4.4) 0.82 (0.65 ... 1.0) -1.7 (-3.4 ... 0.0076) 

EC-EARTH_r1i1p1_SM
HI-RCA4 
historical-rcp85 (1) 93 2.5 (1.4 ... 9.9) 6.6 (2.6 ... 12) 1.4 (1.2 ... 1.5) 3.3 (2.0 ... 4.5) 

GFDL-ESM2M_r1i1p1_
SMHI-RCA4 
historical-rcp85 (1) 76  1.8 (0.71 ... 24) 5.0 (-4.1 ... 16) 1.2 (0.96 ... 1.4) 1.8 (-0.42 ... 4.0) 

HadGEM2-ES_r1i1p1_
SMHI-RCA4 
historical-rcp85 (1) 80 1.5 (0.91 ... 3.2) 3.3 (-0.93 ... 7.6) 1.0 (0.87 ... 1.1) 0.075 (-1.2 ... 1.4) 

IPSL-CM5A-MR_r1i1p1
_SMHI-RCA4 
historical-rcp85 (1) 74 0.86 (0.60 ... 1.5) -1.5 (-6.2 ... 3.2) 0.98 (0.85 ... 1.1) -0.22 (-1.3 ... 0.90) 
MIROC5_r1i1p1_SMHI-
RCA4 
historical-rcp85(1) 98  4.8 (1.3 ... ∞) 6.6 (1.7 ... 11) 1.4 (1.2 ... 1.5) 2.9 (1.8 ... 3.9) 

MPI-ESM-LR_r1i1p1_C
LMcom-CCLM4-8-17 
historical-rcp85 (1) 1.0e+2  0.60 (0.52 ... 0.78) -13 (-20 ... -5.2) 0.68 (0.51 ... 0.83) -6.9 (-10 ... -3.6) 

MPI-ESM-LR_r1i1p1_S
MHI-RCA4 
historical-rcp85 (1) 88 1.1 (0.76 ... 2.6) 1.2 (-3.0 ... 5.2) 1.0 (0.86 ... 1.2) 0.047 (-1.3 ... 2.1) 



NorESM1-M_r1i1p1_S
MHI-RCA4 
historical-rcp85 (1) 82 1.2 (0.66 ... 4.0) 1.7 (-5.2 ... 9.1) 1.1 (0.97 ... 1.3) 1.5 (-0.36 ... 3.2) 

CAM-MPAS-HR 
historicalSST-future (1) 61 1.3 (0.77 ... 3.0) 4.9 (-5.6 ... 17) ( ... ) ( ... ) 

CAM-MPAS-LR 
historicalSST-future (1) 60  1.2 (0.72 ... 3.8) 3.7 (-9.9 ... 19) ( ... ) ( ... ) 

EC-Earth3P 
historicalSST-future (1) 66 0.73 (0.59 ... 1.3) -4.0 (-8.9 ... 2.1) ( ... ) ( ... ) 

EC-Earth3P-HR 
historicalSST-future (1) 63 0.73 (0.59 ... 1.1) -4.4 (-9.6 ... 1.1) ( ... ) ( ... ) 

HadGEM3-GC31-HM 
historicalSST-future (1) 74 0.76 (0.56 ... 1.2) -5.3 (-16 ... 3.2) ( ... ) ( ... ) 

HadGEM3-GC31-LM 
historicalSST-future (1) 72 0.68 (0.51 ... 1.9) -9.3 (-23 ... 9.8) ( ... ) ( ... ) 

HadGEM3-GC31-MM 
historicalSST-future (1) 78 0.70 (0.54 ... 1.1) -7.6 (-16 ... 1.9) ( ... ) ( ... ) 

HiRAM-SIT-HR 
historicalSST-future (1) 67  1.1 (0.64 ... 2.7) 0.99 (-6.3 ... 9.4) ( ... ) ( ... ) 

MPI-ESM1-2-HR 
historicalSST-future (1) 70 1.6 (0.70 ... 12) 7.6 (-7.6 ... 24) ( ... ) ( ... ) 

MPI-ESM1-2-XR 
historicalSST-future (1) 64 2.5 (1.0 ... 39) 12 (0.52 ... 27) ( ... ) ( ... ) 

 



6 Hazard synthesis  

For the event definition described above, 7-day maximum February–May rainfall over the Ndjili river 
basin, we evaluate the influence of anthropogenic climate change on the such defined heavy rainfall 
by calculating the probability ratio as well as the change in intensity using the gridded data-products 
and climate models. Models which do not pass the evaluation described above are excluded from the 
analysis. The aim is to synthesise results from models that pass the evaluation along with the 
observations-based products, to give an overarching attribution statement.  
 
Figure 6.1 shows the changes in probability and intensity for the observations (blue) and models (red). 
Before combining them into a synthesised assessment, first, a representation error is added (in 
quadrature) to the observations, to account for the difference between observations-based datasets that 
cannot be explained by natural variability. This is shown in these figures as white boxes around the 
light blue bars. The dark blue bar shows the average over the observation-based products. Next, a 
term to account for intermodel spread is added (in quadrature) to the natural variability of the models. 
This is shown in the figures as white boxes around the light red bars. The dark red bar shows the 
model average, consisting of a weighted mean using the (uncorrelated) uncertainties due to natural 
variability plus the term representing intermodel spread (i.e., the inverse square of the white bars).  
 
Observation-based products and models are combined into a single result in two ways. Firstly, we 
neglect common model uncertainties beyond the intermodel spread that is depicted by the model 
average, and compute the weighted average of models (dark red bar) and observations (dark blue bar): 
this is indicated by the magenta bar. As, due to common model uncertainties, model uncertainty can 
be larger than the intermodel spread, secondly, we also show the more conservative estimate of an 
unweighted, direct average of observations (dark blue bar) and models (dark red bar) contributing 
50% each, indicated by the white box around the magenta bar in the synthesis figures. More details 
can be found in Otto et al., (2024).  Figure 6.2 shows the same, but for a 1.3C warmer climate.   

https://ascmo.copernicus.org/articles/10/159/2024/


 
Figure 6.1: Synthesis of (a) intensity change and (b) probability ratios when comparing RX7day over 
the study region with a 1.3℃ cooler climate.  
 

 
 
Figure 6.2: Synthesis of (a) intensity change and (b) probability ratios when comparing RX7day over 



the study region with a 1.3℃ warmer climate.  
 
As also discussed in section 3.2, the observational products show very different results that are 
incompatible with each other, highlighted by the large white boxes around the blue bars in figure 6.1. 
Therefore, some, or all of the observed products are clearly wrong. Given that the weather station data 
again shows a different behaviour we cannot exclude a data set or identify which ones are clearly 
wrong. Hence, while the synthesised observational results show no change as the best estimate this 
does not mean that there is no change. Without trustworthy observations to evaluate the climate 
models, the situation is similar: while the synthesised result for the models as well as overall is 
centred around zero, this does not mean that we can exclude climate change to be an important driver 
of more frequent and intense heavy rainfall events. We thus conclude that we cannot provide an 
attribution statement, but that the possibility of an important role of climate change can also not be 
excluded and thus need to be included in adaptation and resilience planning.  
 
 

 



7 Vulnerability and Exposure 
 
The April 2025 floods in western and central DRC exposed underlying social and structural 
conditions that continue to shape the country’s vulnerability to climate-related hazards. Kinshasa, the 
capital of the DRC, has been heavily impacted by the floods following heavy rainfall. News reports 
indicate that almost half of the city of Kinshasa (26 districts) have been affected by the floods, 
submerging the main road to the airport and with the outskirts of the poorest neighborhoods of 
Kinshasa hit the hardest given its proximity to rivers beds (BBC, 2024). Roads and houses have been 
damaged, including the main road to the airport. Access to drinking water is not available in at least 
16 communes of the city due to submerged water facilities (NPR, 2025).  
 
The floods occurred in a region marked by geographic contrasts and demographic change. Many cities 
in the Congo River Basin (CRB) are located near the major rivers and tributaries, with 39 million 
people living within 10 km of one in the CRB  (Trigg et al., 2020). Kinshasa, the capital, sits at the 
intersection of steep hills and low-lying floodplains along the Congo and N’Djili rivers in the far west, 
creating sharp variation in elevation and land use. Third-largest metropolitan area in Africa, the 
capital is currently home to about 18 million people, growing at an annual rate of 4.38% with urban 
densities reaching as high as 27,000 people per km2 (World Population Review, n.d.). With over 75% 
of the city households classified as poor (Global Data Lab, n.d.), the majority of Kinshasa’s 
population lives in informal settlements that have expanded rapidly into flood-prone zones - 
conditions that exacerbate vulnerability even during moderate rainfall. Central DRC, on the other 
hand, is predominantly rural, with dispersed settlements, dense forested areas under pressure from 
subsistence agriculture and logging, and limited access to formal infrastructure. Across both contexts, 
population growth and land conversion are reshaping landscapes in ways that heighten flood risk.  
 

https://www.bbc.com/news/articles/cr782rgn8x4o
https://www.npr.org/2025/04/08/nx-s1-5355599/congo-kinshasa-flooding
https://iopscience.iop.org/article/10.1088/1748-9326/11/9/094014
https://worldpopulationreview.com/cities/dr-congo/kinshasa
https://globaldatalab.org/demographics/profiles/CODr101/


 
Figure 7.1: Map of the Congo River Basin. Source: Harrison et al. (2016).  
 
Although this study focuses on western and central provinces, national patterns of displacement, 
governance strain, and economic instability - partly driven by prolonged conflict in the east - have 
ripple effects that shape conditions across the country, including in the capital. These challenges are 
further shaped by structural pressures linked to natural resource extraction. Eastern DRC hosts some 
of the world’s richest deposits of cobalt and other critical minerals (Gulley, 2022; Lubaba Nkulu et al., 
2018), which, while economically significant, have also contributed to persistent insecurity and 
competition over land and control. Over the past years, eastern DRC - particularly North Kivu - has 
experienced a rapidly evolving and devastating conflict, involving multiple armed actors, displacing 
over 1.6 million people and leaving millions more dependent on humanitarian assistance (IFRC, 
2024). While concentrated in the east, this instability places additional pressure on national systems, 
particularly as displaced populations move westward and as humanitarian and government capacity is 
streteched thin (Mugisho et al., 2024). Kinshasa, historically a destination for migrants and those 
seeking safety or opportunity, has continued to absorb new arrivals from conflict-affected areas, 
further intensifying demand for services, housing, and jobs. 
 
In this context, even short-duration or localized flood events can trigger wide-reaching impacts. 
Understanding these interconnected drivers is essential to assessing current risk, and to anticipating 

https://www.researchgate.net/publication/311154427_Congo_River_Basin
https://www.sciencedirect.com/science/article/pii/S0301420722004500
https://pmc.ncbi.nlm.nih.gov/articles/PMC6166862/pdf/emss-79043.pdf
https://pmc.ncbi.nlm.nih.gov/articles/PMC6166862/pdf/emss-79043.pdf
https://www.ifrc.org/emergency/democratic-republic-congo-population-movement
https://www.ifrc.org/emergency/democratic-republic-congo-population-movement
https://iopscience.iop.org/article/10.1088/2515-7620/ad23f3


how vulnerability and exposure may evolve as rainfall events intensify and structural stressors persist 
across the DRC. 
 
 
7.1 Land-use changes 
 
Land-use change and environmental degradation are key factors shaping flood vulnerability in 
Kinshasa and across central DRC. The replacement of natural vegetation with compacted surfaces - 
such as bare soil, informal roads, and trampled grounds - has significantly reduced infiltration and 
increased surface runoff (Moeyersons et al., 2015). In Kinshasa, runoff coefficients - how much 
rainfall flows over the surface rather than being absorbed by the ground - reach up to 96% on 
over-compacted roads, while vegetated or cultivated plots with full soil coverage produce negligible 
runoff (Moeyersons et al., 2015). Even partially covered areas, such as bare soil with lichen crusts, 
generate intermediate runoff (about 40%), highlighting the sensitivity of runoff response to ground 
cover quality.  
 
Increased runoff intensifies both erosion and flood risk. Concentrated overland flow, especially on 
steep slopes, leads to gully formation and sediment transport. In Kinshasa, this process has 
contributed to the development of hundreds of large urban gullies - some over 100m long - that not 
only degrade terrain, but also act as flood conduits, accelerating water flow toward downstream 
communities (Lutete Landu et al., 2025). Erosion in these contexts compromises slope stability and 
overwhelms natural retention systems, further amplifying flood peaks.  
 
In and around Kinshasa, deforestation is driven by intersecting pressures linked to rapid population 
growth, energy demand, and expanding subsistence needs (Re Soil Foundation, 2022). With most 
households in the capital relying on charcoal and fuelwood for cooking, biomass harvesting remains a 
leading cause of forest loss (Butler, 2020). This demand, combined with slash-and-burn agriculture on 
the city’s periphery, contributed to steady degradation of natural vegetation cover. Logging - both 
legal and informal - also plays a role, with access roads facilitating additional land-use change and 
resource extraction (Re Soil Foundation, 2022). These processes weaken natural hydrological 
regulation, particularly on the city’s exposed slopes, where forest loss undermines infiltration, 
destabilizes soils, and accelerates runoff. Over time, this cumulative deforestation has diminished the 
landscapes’s ability to absorb heavy rains, amplifying both erosion and flood risk. In Kinshasa’s 
low-lying neighborhoods, sediment from upland erosion also clogs drainage channels, compounding 
flood impacts during peak rainfall.  
 
Beyond Kinshasa, erosion mapping and ecological studies highlight similar dynamics across central 
DRC. Over 25,000 hectares of Kinshasa are classified as highly erosion-prone - mainly in elevated, 
sparsely vegetated zones (Kabantu et al., 2018). Research from the Yangambi region, while outside 
the study’s immediate scope, illustrates how forest fragmentation driven by shifting cultivation and 
settlement expansion weakens watershed buffering capacity. Landscape indicators, such as disturbed 
forest edge density and cropland patchiness, have been found to correlate with altered runoff and 
declining water quality (Chishugi et al., 2021). These patterns reflect environmental transformations 
effecting both rural watersheds and downstream urban systems, underscoring the regional relevance of 
land cover change to flood risk. 
 

https://ideas.repec.org/a/spr/nathaz/v79y2015i1p203-233.html
https://ideas.repec.org/a/spr/nathaz/v79y2015i1p203-233.html
https://www.sciencedirect.com/science/article/pii/S2095633924000765#:~:text=To%20prevent%20and%20limit%20the,in%20reducing%20urban%20gully%20expansion.
https://resoilfoundation.org/en/environment/deforestation-congo-basin/
https://worldrainforests.com/congo/deforestation.html
https://resoilfoundation.org/en/environment/deforestation-congo-basin/
https://piahs.copernicus.org/articles/378/51/2018/
https://www.mdpi.com/2073-445X/10/2/165


While these land-use dynamics shape the physical drivers of flood risk, the distribution of exposure is 
deeply influenced by how space is organized, regulated, or informally occupied. Urban layout, 
infrastructure, and planning practices play a decisive role in shaping who is most vulnerable and why. 
 
 
7.2 Urban planning and informality 
 
Kinshasa is one of the most populated cities in the world, with estimates of close to 18 million with 
projections to double within the next 20 years (World Population Review World Bank, 2021). Urban 
planning has been based on the city’s layout under colonial occupation with the last development 
frameworks dating back to 1967 (Mufungizi & Akilimali, 2024). Hence, large accumulations of 
informal settlements (75% of urban population) have formed with little green spaces to absorb flood 
waters (see figure 7.2) (Núnez and Jessse, 2025 World Bank, 2021). 
 

 
 
 
Figure 7.2: Types of land use, produced for the Kinshasa Metropolitan Area Strategic Master Plan 
(Guérin et al., 2013, presented in Bédécarrats et al., 2019). 
 
The pressure on the need for housing pushes the population to build in major river beds during dry 
seasons, making flood impacts worse  (Mufungizi & Akilimali, 2024,Nsokimieno et al., 2014). 
Historically, flood impacts are concentrated in neighbourhoods along the riverside, and peri-central 
neighbourhoods with high population density and precarity (Malumba, 2024). Neighborhoods such as 
Kingabwa, Kalamu, Matete, and Limete - located along the N’Djili, Yolo, and Kalamu rivers - are 
particularly affected, with informal settlements often built without adequate drainage or land 
regulation (Malumba, 2024). High densities, fragile housing, and poor waste management increase 

https://worldpopulationreview.com/cities/dr-congo/kinshasa#:~:text=Kinshasa's%202025%20population%20is%20now,the%20UN%20World%20Urbanization%20Prospects.
https://documents1.worldbank.org/curated/en/638901637330907469/pdf/Profiling-Living-Conditions-of-the-DRC-Urban-Population-Access-to-Housing-and-Services-in-Kinshasa-Province.pdf
https://www.tandfonline.com/doi/epdf/10.1080/21650020.2024.2307350?src=getftr&utm_source=scopus&getft_integrator=scopus
https://cic.nyu.edu/wp-content/uploads/2025/02/Urbanization-for-the-Few-2025.pdf
https://documents1.worldbank.org/curated/en/638901637330907469/pdf/Profiling-Living-Conditions-of-the-DRC-Urban-Population-Access-to-Housing-and-Services-in-Kinshasa-Province.pdf
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both physical exposure and the risk of disease outbreaks during floods, including malaria, typhoid, 
and diarrhoea. Vulnerable groups such as children, older adults, and chronically ill individuals are 
disproportionately affected (Malumba, 2024). These areas are further characterised by a lack of 
sewerage, drainage systems, and waste disposal systems (Nsokimieno et al., 2014). Many drainage 
channels, where they exist, are often obstructed by solid waste (DRR Network of African Journalists, 
2023; Kang et al., 2023). In low-lying neighborhoods, this has led to repeated flooding even during 
moderate rainfall, highlighting the compounding impact of informality, service gaps, and physical 
geography. 
 
A study from 2019 shows that the majority of the population in Kinshasa is exposed to floods (58%) 
with most affected areas in Kalamu, Mont-Ngafula and Limete, which is in direct proximity to the 
flooded Ndjili river in the east (UNDP, 2023). Results from an impact analysis conducted by the Red 
Cross and University of Kinshasa (2021), confirm flood impacts in various neighbourhoods in Limete, 
due to their close proximity and low elevation compared to the riverbed (Imwangana et al., 2021). 
Additionally, areas along the Ndjili river have been identified as hotspots for vector borne and water 
borne diseases such as malaria and diarrheal diseases, that are being promoted through stagnant flood 
waters, lacking sewage and open waste disposal (Malumba, 2024). Furthermore, access to essential 
services is among the lowest in all major African cities and while 68% of the population in Kinshasa 
have access to piped water World Bank, 2021, news report show that drinking water is not available in 
at least 16 communes of the city due to submerged water facilities (NPR, 2025) and the access to safe 
water, electricity, and toilets is especially low in precarious areas of the affected outskirts 
(Nsokimieno et al., 2014).  

Kinshasa is crossed by the Congo River, but limited wastewater infrastructure means much of the 
city’s effluent is discharged directly into rivers or open drains. Currently, only 5.5% of the population 
is connected to a sewer system, which itself captures merely 40% of the city's daily water usage. The 
remaining wastewater is typically released into open wells or onto the streets. This inadequate 
sanitation infrastructure not only exacerbates river pollution but also poses serious public health risks 
through the spread of waterborne diseases linked to untreated wastewater (Milot, 2019). Congolese 
scientists report high levels of faecal contamination in urban watercourses (Booty, Makumeno, 2025), 
and the overflow of one of Kinshasa’s most polluted streams raises serious public health concerns.  

Additional vulnerabilities arise due to high levels of poverty, unemployment and social inequity. 
Disaster impacts are seen due to existing conditions of poverty (Raju, Boyd & Otto, 2022; 
Alcantara-Ayala, 2022). Poverty and unemployment rates in informal settlements are above 90% and 
are among the highest in the world (Nsokimieno et al., 2014). Poverty has been exacerbated through 
the Covid-19 pandemic and inflation. Furthermore, due to continuous loss in value of the Congo 
Franc, the American Dollar has become an informal second currency, however it remains inaccessible 
for the lowest income groups, widening the inequalities. Social structures reinforce poverty with 
larger households being significantly poorer and female headed households being poorer than male 
headed households (World Bank, 2021). During floods, poverty and loss of employment increases due 
to inaccessibility of infrastructure, which translates to economic losses of 1.2 million USD per day 
among local commuters (He et al., 2021).  
 
The challenges described above - rapid, unplanned growth, weak infrastructure, and high levels of 
informality - significantly constrain flood resilience. These pressures compound existing risks and 
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limit the capacity for mitigation. The following section explores how these vulnerabilities intersect 
with flood management systems across Kinshasa and the wider Congo Basin. 
 
 
7.3 Flood risk management 

The DRC has developed a range of frameworks to address disaster risk reduction (DRR) and flood 
management. The National Strategy and Action Plan for Reducing Natural Risks and Disasters 
(2017-2023) outlines nine priority areas, including the official recognition of DRR, implementation of 
institutional mechanisms, and strengthening of disaster preparedness and response activities at the 
national level. Additionally, the DRC’s National Adaptation Plan (2022-2026) emphasizes integrating 
climate change adaptation into national development planning, with a focus on enhancing institutional 
capacity and coordination among stakeholders. Further, validated in 2024, a new national urban 
planning and construction code offers a framework for better integrating land use and hazard 
exposure, but has yet to be operationalized in Kinshasa (Radio Okapi, 2024). 

Efforts to integrate catchment-based thinking into flood risk management are emerging (Cap-Net, 
n.d.). In river basins such as the Lukaya, government agencies and development partners have piloted 
integrated water resource management (IWRM) activities, including reforestation, erosion control, 
and participatory monitoring networks, to reduce runoff and improve coordination between upstream 
and downstream communities (UNEP, 2017).  

In 2018, severe flooding in Kinshasa resulted in 51 fatalities, affected approximately 16,000 people, 
and caused damages and losses estimated at US$76 million. A rapid Post-Disaster Assessment 
conducted by the Government of the DRC and Kinshasa Municipality, with support from the Global 
Facility for Disaster Reduction and Recovery (GFDRR) and the World Bank, identified the absence of 
early warning systems as a major contributing factor to the high human toll and widespread impact 
(CREWS, 2018).  

The DRC has made progress in developing early warning systems (EWS), especially in high-risk 
watersheds such as the N’Djili and Kalamu basins. Supported by the CREWS initiative and other 
partners, EWS infrastructure now includes a network of rain and river gauges, delivering updated 
forecasts every three hours (CREWS, n.d.). Alerts are disseminated through radio, television, and 
mobile channels (WMO, n.d.), reaching an estimated 300,000 people (CREWS, n.d.). Community- 
based networks coordinated by local actors and organizations such as UNICEF and the Catholic 
Church (CRS) help spread alerts in areas with limited communication infrastructure (CRS & 
UNICEF, 2017; CRS, n.d.). Though gaps in coverage persist, particularly across remote or informal 
settlements, these systems have enabled faster decision-making and improved coordination across 
civil protection agencies (CRS & UNICEF, 2017; CREWS, n.d.).  

In Kinshasa, flood risk remains high due to rapid urban growth, and limited basic services and 
infrastructure coverage. Targeted risk reduction efforts have focused on the N’Djili River watershed, 
where World Bank-supported projects have included risk assessments, drainage rehabilitation, slope 
stabilization through vegetation, and dredging of high-risk channels (World Bank, 2023). For 
example, the Kin-Elenda project aims to strengthen flood resilience in the capital by improving 
hydrometeorological data collection and early warning systems. It promotes inclusive, risk-informed 
planning and enhances coordination among agencies including MettelSat, INERA, and the Civil 
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Protection Department, while linking local data systems with global platforms to better alerts as well 
as emergency response (World Bank, 2023).    
 

7.4 Governance 
 

Following its colonial legacy, the Democratic Republic of the Congo (DRC) continues to face 
significant challenges in climate governance and land-use planning, rooted in a legacy of weak legal 
and institutional frameworks. In particular, the absence of a coherent system for land-use planning has 
hindered sustainable land governance and contributed to recurrent land conflicts. Developing such 
frameworks, especially through inclusive processes involving civil society, offers a strategic 
opportunity to strengthen land tenure security and reduce tensions. This is especially critical for the 
DRC’s most disadvantaged communities, who largely reside in forested areas and depend on land for 
their livelihoods. Clarifying their land use and governance rights is essential for promoting 
community-led conservation efforts and reinforcing peace, security, and resilience at the local level 
(The Land Writes, 2023). 

As noted by environmental researcher Prof. Cush Ngonzo Luwesi, the absence of a national climate 
strategy has led to "a lack of cohesion and unifying objectives" (Gabbatiss, Viglione, 2024). While the 
Environmental Protection Law (Journal Officiel de la République Démocratique du Congo, 2011) 
mandates the state and provinces to adopt necessary climate adaptation measures, implementation 
remains limited. Nevertheless, some progress is underway: the DRC Government, in collaboration 
with the United Nations Development Programme (UNDP), is in the process of developing the 
country’s first disaster risk reduction (DRR) policy. Although the 2013 Poverty Reduction Strategy 
highlights climate adaptation and disaster risk management (DRM) as central priorities, there is still 
no systematic tracking of government spending on DRR. 

Moving forward, key priorities include enhancing hazard monitoring and forecasting, integrating risk 
knowledge into planning and decision-making, strengthening early warning systems and contingency 
planning, and building institutional capacity for effective DRM (GFDRR, 2024). 

 
V&E Conclusion 
 
While the physical hazard was significant, the scale of human impact was largely driven by 
long-standing vulnerabilities and patterns of exposure. In Kinshasa and surrounding areas, flood risk 
is amplified by rapid population growth, limited infrastructure coverage, and high reliance on 
informal systems - particularly in areas where critical services such as drainage, healthcare, and 
electricity remain inconsistent or difficult to access. 
 
Population pressure has driven the expansion of settlements into flood-prone areas, often without 
adequate planning or protective infrastructure. At the same time, the loss of vegetative cover and poor 
waste management have further eroded the capacity to absorb and respond to flood hazards. These 
risks are expected to aggravate, as Kinshasa’s population - already about 18 million - continues to 
grow at over 4% annually, along with rainfall extremes likely becoming more intense under a 
changing climate. 
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Data availability 

All time series used in the attribution analysis are available via the Climate Explorer. 
%FOR DATA THAT ISN’T, data is available upon request, CONTACT...:  
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Appendix 

A.1 Model evaluation tables 

%only for large ensembles if not totally shown in sect 4. 
 

A.2 Additional details 

%only if needed for extra figures 
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