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Main findings
● The flooding and landslides leading to severe impacts were a direct consequence of

extremely heavy rainfall in the week beginning on 23rd  May and continuing into
June. We therefore assess the role of climate change in 7 & 15-day mean rainfall.

● While the full profile of the impacts on human life and livelihoods has yet to
be analysed, initial assessments show that the floods and particularly landslides
disproportionately affected vulnerable communities, with particular
devastation in low-income neighbourhoods .  Thus, the magnitude of this
disaster on these groups has been exacerbated by pre-existing structural
vulnerability in the region.  

● Today, there is a dense network of 389 weather stations in the area. However, we
select 75 stations that have consistent data  since at least the 1970s and are distributed
across the study region for our observational analysis. Both the 7- and 15-day events
are exceptionally rare events, which have only approximately a 1-in-500 and
1-in-1000 chance respectively of happening in any year in today’s climate, which has
been warmed about 1.2°C by human activities.

● Although they are still very unusual, these events are now more likely to happen than
they would have been in a climate that had not been warmed by human activities. But,
as both events are far outside the previously observed records, it is not possible to
quantify how much more likely climate change has made them to happen, based on
observations.  Warming of the planet has also increased the intensity of the rainfall:
rainfall events as rare as these, that occurred in a 1.2°C cooler climate, would have
been approximately a fifth less intense.

● To determine the role of climate change in these observed changes we undertake the
same assessment using climate models. While many climate models are able to
simulate the main precipitation features over the region, we find that for this spatially
small event, all models exhibit systematic errors in precipitation magnitudes, partly
due to having coarse spatial resolution and misrepresentation of key physical
processes (e.g. convection). We can therefore not quantify the role of climate change
in the observed increase in likelihood and intensity.

● However, combining observations with our physical understanding of the climate
system we conclude that human-caused climate change is , at least in part, responsible
for the observed increases in likelihood and intensity of heavy rainfall events as
observed in May 2022.

● These findings are consistent with future projections of heavy rainfall in the region
and suggest that these trends will continue to increase as long as greenhouse gas
concentrations continue to increase. Also, due to climate change, other factors such as
rising sea levels and higher tides could increase the vulnerability to heavy rainfall,
leading to more urban floods in Recife, for example.

● The extreme nature of the floods made it so that exposure was the main determinant
of impact, although long-term impacts and recovery will likely be mediated by
socio-economic, demographic and governance factors. An increase in urbanisation,
especially unplanned and informal in low-lying flood-prone areas and steep hillsides



have increased the community exposure to these hazards. While forecasts and
warnings were provided, it is unclear to what extent these informed anticipatory or
early action that could have reduced the impacts.

● This indicates the need to review and strengthen the linkage between weather
warnings and the process that would lead to anticipatory action based on those
warnings. This region also generally has an infrastructure deficit (e.g. housing, roads,
water and sanitation etc.). As new infrastructure is built, there is an opportunity to
increase resilience by accounting for increasing risks in the design and location,
instead of reverting to outdated design standards.

1 Introduction.

The combination of high spatial and temporal rainfall variability and the highest proportion of
people living in poverty in Brazil makes the Northeast of Brazil (NEB) particularly vulnerable
to climate variability, extremes and climate change impacts. Furthermore, there is strong
evidence that climate change will increase drought risk and severity in this region (IPCC,
2O21 ). Although the NEB has historically been known for extreme droughts, heavy rainfall1

events also have a history of severely impacting the area. In the week beginning on May 23rd,
2022, very heavy rainfall started falling over parts of NEB, in the states of Pernambuco,
Alagoas, and Paraíba. The states of Sergipe and Rio Grande do Norte were also affected by
this event. The rainfall began to intensify on the 25th of May, leading to flash floods and
landslides in NEB and a dam break in the state of Paraíba (FloodList, 26 May 2022 ). In less2

than 24 hours on May 27-28, parts of Pernambuco received about 70% of the total rainfall
expected for the entire month of May (France24, 30 May 2022 ). Fig. 1 shows this event,3

averaged over the week when most of the associated impacts were reported (Fig. 1(a)) and
over the fortnight when the precipitation was high.

3

https://www.france24.com/en/live-news/20220530-bolsonaro-visits-disaster-zone-after-deadly-brazil-ra
ins

2 https://floodlist.com/america/brazil-floods-pernambuco-alagoas-paraiba-may-2022#

1

https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Cen
tral_and_South_America.pdf

https://www.france24.com/en/live-news/20220530-bolsonaro-visits-disaster-zone-after-deadly-brazil-rains
https://www.france24.com/en/live-news/20220530-bolsonaro-visits-disaster-zone-after-deadly-brazil-rains
https://floodlist.com/america/brazil-floods-pernambuco-alagoas-paraiba-may-2022#
https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Central_and_South_America.pdf
https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Central_and_South_America.pdf


Figure 1: (a) Observed average 7-day rainfall for 25-31  May 2022  and  (b) 15 -day
rainfall for 25 May-1 June, 2022, over North Eastern Brazil  from MERGE-GPM

dataset.

This event triggered extensive landslides and widespread floods in the affected areas, resulting
in 133 fatalities and over 25,000 displaced, predominantly impacting residents of low-income
neighbourhoods near hillsides (Gizmodo, 1 June 2022 ). Following the disaster, at least 804

municipalities across Pernambuco and Alagoas declared a state of emergency (Civil Defense
Pernambuco, 2022; Civil Defense Alagoas, 2022). The Metropolitan Region of Recife (RMR)
in the state of Pernambuco was badly hit, this event being one of the worst extreme rainfall
events in its history.

Easterly waves, that are typical to this season and have the potential to cause heavy and
widespread rainfall as well as thunderstorms, was the primary driver of this event. The
incidence of this phenomenon when this part of the country had already been experiencing
wetter than normal rainfall conditions, associated with a warm tropical South Atlantic and La
Niña conditions over the Pacific, led to the abnormally high rainfall amounts in this region.
The impacts due to heavy rainfall in these parts, especially flooding, are known to be
exacerbated when the rainfall concurs with high astronomical tides, storm surges and run ups,
and also influenced by sea level rise associated with climate change (Costa et al., 2010).
However, the impacts of the May 2022 event is largely ascribed to the precipitation itself
(France24, 28 May 2022 ).5

5 https://www.france24.com/en/live-news/20220528-downpours-in-brazil-leave-at-least-28-dead
4 https://gizmodo.com/brazil-landslides-recife-pernambuco-floods-1848997858

https://www.france24.com/en/live-news/20220528-downpours-in-brazil-leave-at-least-28-dead
https://gizmodo.com/brazil-landslides-recife-pernambuco-floods-1848997858


Figure 2. (a) Topography of the region, with ocean displayed as white area and state borders
indicated by black lines. (b) Köppen Climate Zones in Northeast Brazil (Alvarez et al. 2012).

(c) Annual mean precipitation (mm) over Northeast Brazil from MERGE-GPM dataset
(Rozante et al. 2010). The study region is indicated by the black box.

In this study, we analyse precipitation over a small region enclosing the area with the highest
impacts. Recognising the localised nature of the rainfall, for this analysis, we restrict to using
models only of high resolution (≤ 60km). However, the resolution of these models is still such
that very few grid boxes represent the coastal region with the largest impacts. In order to be
able to use these models and compare with observations, we choose to extend the region
slightly further inland. The chosen spatial definition is a rectangular domain defined by
10°S-5°S; 36°W-45.5°W, in which we use land points only in the black box in Fig. 1.
Consideration is also given to the homogeneity of the region (Fig. 2(a)). The study box is
dominated by one type of climate zone - the tropical Savanna (Fig. 2(b)) and lies to the east of
a drier region in climatological precipitation (Fig. 2(c)). Because the maximum impacts were
witnessed in one week, we use as a temporal definition the annual maximum 7-day average
precipitation from, RX7d. Because the event is furthermore characterised by higher than
average precipitation over periods longer than a week, with several peaks, we also use the
alternative temporal definition of the annual maximum of 15-day average precipitation,
RX15d.

The period from March to August is the rainy season of the eastern northeast Brazil coast.
Generally, in March and April the Intertropical Convergence Zone (ITCZ) has its largest
incursion to the south hemisphere and in its seasonal march produces rainfall events over the
whole Northeast Brazil region through deep convection and the so-called cold rain (Waliser;
Jiang, 2015). On the other hand, the rainfall over the eastern coast of Northeast Brazil is



largely produced by easterly wave disturbances (Gomes et al., 2015). Even though these
waves occur all year round, they have a peak of activity during the months of May to August,
reaching the coast with heavy rain and with rainfall events lasting for a few days. They have a
spatial scale of local-regional action and very often are associated with warm convective
rainfall (Liu and Zipser, 2009). These characteristics are hard to be represented in climate
models due to the lack of high spatial resolution and adequate convection schemes.
Expressive daily rainfall amounts over 150 mm are commonly recorded in this region and are
usually associated with easterly wave disturbances (Gomes et al., 2015). For example, from
21-May until 01-Jun 2017, some cities in Pernambuco experienced consecutives days with
very high daily rainfall records. Other recent events that were also associated with severe
impacts in Pernambuco include those recorded in the years 2000, 2004, 2005, 2010, 2011,
2017, 2019 and 2021 .6

So far, not many attribution studies for floods or extreme precipitation events have been
carried out for regions in Northeast Brazil. One recent study by Rudorff et al. (2021) has
assessed river floods from the Parnaíba river, situated in a different climate zone to the west of
our study region, that occurred in the year 2018, 2019 and 2022, the authors found that
anthropogenic factors have increased the likelihood of these events by approximately 30%,
although the link to observed (decreasing) trends is not clear.

2 Data and methods

2.1 Observational data

Station data

We analysed long-term observed daily precipitation records from 1960-present, from 389
weather stations spread over our study region, as shown in Fig. 3(a). The data is sparse in the
beginning of the time series, and becoming denser from the 80's. These stations are owned and
monitored by the meteorology/hydrology state service institutions in the states of Rio Grande
do Norte, Paraíba, Pernambuco and Alagoas- Empresa de Pesquisa Agropecuária do Rio
Grande do Norte (EMPARN-RN), Agência Executiva de Gestão das Águas (AESA),7 8

Agência Pernambucana de Águas e Clima (APAC-PE) and Secretaria do Estado do Meio9

Ambiente e Recursos Hídricos de Alagoas (SEMARH-AL) and federal institutions- Instituto10

Nacional de Meteorologia (INMET) and Agência Nacional de Águas e Saneamento Básico11 12

(ANA).

The time series of these 389 stations have been averaged to represent the average precipitation
over the area. However, to avoid spurious trends due to inhomogeneity in the number of
stations available in time, we also averaged over the 75 stations that have data from at least

12 https://www.gov.br/ana/en
11 https://portal.inmet.gov.br
10 http://www.semarh.al.gov.br
9 https://www.apac.pe.gov.br
8 http://www.aesa.pb.gov.br
7 www.emparn.rn.gov.br
6 https://www.pe-az.com.br/o-estado/fenomenos-naturais/1400-enchentes

https://www.gov.br/ana/en
https://www.gov.br/ana/en
https://portal.inmet.gov.br
http://www.semarh.al.gov.br/
https://www.apac.pe.gov.br
http://www.aesa.pb.gov.br/
http://www.emparn.rn.gov.br/
https://www.pe-az.com.br/o-estado/fenomenos-naturais/1400-enchentes


from 1970 until May 2022, and over the 11 stations with data from 1960 until now (a subset of
the 75 stations). The distribution of the 75 station locations is relatively equally spaced (Fig.
3(b)), whereas the 11 stations with the longest data are concentrated over a small region (Fig.
3(c)).

Figure. 3. Locations of weather stations within the study region. (a) All 389 stations
(b) 75 stations with data from at least 1970. (c) 11 stations with data since 1960

(subset of 75 stations in panel (b)).

We compare the annual 7-day maxima and annual 15-day maxima of the three different station
averages with ERA5 data (Hersbach et al. 2020) and GPM-Merge (Rozante et al. 2010)
averaged over the study area (see Fig. 4). The GPM-Merge dataset is only used for this
comparison, as it is too short for an extreme value analysis. The ERA5 data differs from the
other time series and is therefore considered to be less reliable for this specific region. The 75
stations average resembles the average over 389 stations well over most of the years and
results between the 389 stations average and the 75 stations average are consistent (not
shown). The 11 stations average diverges from the other time series. This may have to do with
the unequal distribution of these stations across the region, being located in a small subregion
of the full rectangular study area. Therefore the 11 stations average is not considered for
further analysis. We thus continue the analysis of observations with the 75 stations average.



Figure 4: (a) Time series of annual  7-day maximum precipitation in [mm/day] and (b) 15-day
maximum precipitation in [mm/day] for different selections of stations (all, 75 or 11) and two

different observations/reanalyses (ERA5, GPM-Merge).

As a measure of anthropogenic climate change we use the (low-pass filtered) global mean
surface temperature (GMST), where GMST is taken from the National Aeronautics and Space
Administration (NASA) Goddard Institute for Space Science (GISS) surface temperature
analysis (GISTEMP, Hansen et al., 2010 and Lenssen et al. 2019).

2.2 Model and experiment descriptions

We use three different multi-model ensembles from climate modelling experiments using very
different framings (Philip et al., 2020): Sea Surface temperature (SST) driven global
circulation high resolution models and coupled global circulation models and regional climate
models.

The first set of models used in the analysis include the AM2.5C360 (Yang et al. 2021, Chan et
al. 2021) and the FLOR (Vecchi et al. 2014) climate models developed at Geophysical Fluid
Dynamics Laboratory (GFDL). The AM2.5C360 is an atmospheric GCM based on that in the
FLOR model (Delworth et al. 2012, Vecchi et al. 2014) with a horizontal resolution of 25 km.
Ten ensemble simulations of the Atmospheric Model Intercomparison Project (AMIP)



experiment (1871-2020) are analysed. These simulations are initialised from ten different
pre-industrial conditions but forced by the same SSTs from HadISST1 (Rayner et al. 2003)
after groupwise adjustments (Chan et al. 2021), as well as the same historical radiative
forcings. The FLOR model, on the other hand, is an atmosphere-ocean coupled GCM with a
resolution of 50 km for land and atmosphere and 1 degree for ocean and ice. Five ensemble
simulations from FLOR are analysed, which cover the period from 1860 to 2100 and include
both the historical and RCP4.5 experiments driven by transient radiative forcings from CMIP5
(Taylor et al. 2012).

The second ensemble is the HighResMIP SST-forced model ensemble (Haarsma et al. 2016),
the simulations for which span from 1950 to 2050. The SST and sea ice forcings for the period
1950-2014 are obtained from the 0.25° x 0.25° Hadley Centre Global Sea Ice and Sea Surface
Temperature dataset that are area-weighted re-gridded to match the climate model resolution
(see Table 1 ). For the ‘future’ time period (2015-2050), SST/sea-ice data are derived from
RCP8.5 (CMIP5) data, and combined with greenhouse gas forcings from SSP5-8.5 (CMIP6)
simulations (see Section 3.3 of Haarsma et al. 2016 for further details).

Table 1: List of HighResMIP models used in the study.

Model Resolution Institute

CNRM-CM6-1-HR ~50 km Centre National de Recherches Météorologiques

EC-Earth3P-HR ~40 km EC-Earth-Consortium

HadGEM3-GC31-HM ~25 km UK Met Office, Hadley Centre

HadGEM3-GC31-MM ~60 km UK Met Office, Hadley Centre

The third ensemble is the Coordinated Regional Climate Downscaling Experiment
CORDEX-CORE (10 models with at 0.44° resolution (SAM-44) and 4 models at 0.22°
resolution (SAM-22)) multi-model ensemble (Gutowski et al., 2016; Giorgi et al., 2021),
comprising 14 simulations resulting from pairings of Global Climate Models (GCMs) and
Regional Climate Models (RCMs) (see Table 2 below). These simulations are composed of
historical simulations up to 2005, and extended to the year 2100 using the RCP8.5 scenario.

Table 2. List of regional climate models used with their driving global climate models (see
Gutowski  et al., 2016 for a description of the Cordex experiment and Taylor et al. (2012) for

a description of the GCMs)

Regional Climate Model Resolution Global Climate Model Period

REMO2015 0.22° MPI-ESM-LR 1970-2100

REMO2015 0.22° NorESM1-M 1970-2100

RegCM4-7 0.22° MPI-ESM-MR 1970-2099

RegCM4-7 0.22° NorESM1-M 1970-2099



REMO2009 0.44° MPI-ESM-LR 1950-2100

SMHI-RCA4 0.44° CSIRO-Mk3-6-0 1951-2100

SMHI-RCA4 0.44° EC-EARTH 1951-2100

SMHI-RCA4 0.44° IPSL-CM5A-MR 1951-2099

SMHI-RCA4-7 0.44° MIROC5 1951-2099

SMHI-RCA4 0.44° HadGEM2-ES 1951-2100

SMHI-RCA4 0.44° MPI-ESM-LR 1951-2100

SMHI-RCA4 0.44° NorESM1-M 1951-2100

SMHI-RCA4 0.44° GFDL-ESM2M 1951-2100

UCAN_WRF341I 0.44° CanESM2 1950-2100

The 1960-2022 period for which the observed data is available is chosen for model evaluation,
while the entire length of simulations upto the year 2022 is considered for the attribution
analysis.

2.3 Statistical methods

In this analysis we analyse precipitation time series from eastern Northeast Brazil coast for
7-day and 15-day annual maxima where long records of observed data are available. Methods
for observational and model analysis and for model evaluation and synthesis are used
according to the World Weather Attribution Protocol, described in Philip et al. (2020), with
supporting details found in van Oldenborgh et al. (2021), Ciavarella et al. (2021) and here.

The analysis steps include: (i) trend calculation from observations; (ii) model validation; (iii)
multi-method multi-model attribution and (iv) synthesis of the attribution statement.
We calculate the return periods, Probability Ratio and change in intensity of the event under
study for the comparison between observed GMST values of 2022 and past GMST values
(1850-1900, based on the Global Warming Index https://www.globalwarmingindex.org),
which is a difference of 1.2 °C. To statistically model the event under study, we use a
generalised extreme value (GEV) that scales with GMST. Next, results from observations and
models that pass the validation tests are synthesised into a single attribution statement.

3 Observational analysis: return time and trend

3.1 Analysis of point station data

Fig. 5(a-b) shows the time series of the station-averaged annual maximum precipitation
including the 10-year running mean. The magnitudes of the May 2022 event- 33.96 mm/day

https://www.worldweatherattribution.org/pathways-and-pitfalls-in-extreme-event-attribution/
https://www.globalwarmingindex.org


for the 7-day event and 23.95 mm/day for the 15-day event, are the highest in the respective
records, as can be seen in these figures.

Figure 5: Time series of annual (a) 7-day maximum precipitation in [mm/day] and (b) 15-day
maximum precipitation in [mm/day] averaged over the selected 75 precipitation stations and
the corresponding GEV fits. The green line shows the 10-year running mean.

Fig. 6(a) shows the response of annual maximum 7-day average precipitation to the global
mean surface temperature, while Fig. 6(b) shows the return period curve of the 7-day event in
the current climate and in the past climate when the global mean temperature was 1.2 °C
cooler. The return period of such an event in the current climate is 500 years (95% Confidence
Interval (CI) 66 years to ∞). The positive trend in panel (a) indicates a tendency towards more
and heavier precipitation events in recent years. The probability ratio is 43000 (95% CI 1.7 to
∞) and equivalently, the intensity change is 27% (95% CI 0.95% to 59%). Fig. 6(c-d) shows
the trends and the GEV-fits based on the 15-day event definition. The return period in this case
is found to tend to ∞ (lower bound of 240,000 years), which implies that a 15-day event of this
magnitude is very extreme even for the current climate which is 1.2 °C warmer than
pre-industrial. Consequently, the probability ratio also cannot be defined. The intensity change
ranges from 16-38.5%  (at 95%CI) with a best estimate of 13%.



Figure 6: (a) GEV fit with constant dispersion parameter, and location parameter
scaling proportional to GMST, for the average over 75 stations. No information from
2022 is included in the fit. Left: Annual 7-day (a) and 15-day (c) average rainfall as a
function of the smoothed GMST. The thick red line denotes the time-varying location
parameter. The vertical red lines show the 95% confidence interval for the location
parameter, for the current, 2022 climate and the fictional, 1.2ºC cooler climate. The
2022 observation is highlighted with the magenta box. Right: Return time plots for the
climate of 2022 (red) and a climate with GMST 1.2 ºC cooler (blue), for the 7-day
average (b) and the 15-day average (d). The past observations are shown twice: once
shifted up to the current climate and once shifted down to the climate of the late
nineteenth century. The markers show the data and the lines show the fits and
uncertainty from the bootstrap. The magenta line shows the magnitude of the 2022
event analysed here.

For ascertaining that there are no inconsistencies in the results arising from (i) the choice of
the subset of 75 representative stations (Fig. 3b) instead of all 389 stations (Fig. 3a) for
reasons explained in Section. 2.1, and (ii) the choice of time series to include the 1960-1969
period when the stations were sparse and concentrated to a smaller region (Fig. 3c), we repeat
the above analysis for the 7-day and 15-day events, for two additional cases-

1. Considering all 389 stations for 1960-2022 (plots shown in Fig. S5).
2. Considering 75 stations for 1970-2022 (plots shown in Fig. S6).

We find that there is no indication of differences in the estimates for return period of the 2022
event, probability ratio and change in intensity between  any of these cases.



3.2 Influence of modes of natural variability

During the period of heavy precipitation and the preceding months there has been an ongoing
La Niña event (Jones, 2022). This modulates the rainfall and it may have exacerbated the
average rainfall in the eastern Northeast Brazil (ENEB). Fig. 7 shows the correlations between
the combined GPCC v2020 + monitoring product V6 + first guess (Schneider et al., 2020;
Ziese et al., 2011) and the NCDCv5 ERSST Sea Surface Temperature (SST) values (Huang et
al., 2017). SST values in the Southern Atlantic ocean were only slightly higher in May, so this
may have had an influence as well. In the ENEB, the precipitation is also modulated by
Easterly Waves Disturbances (EWD) (Gomes et al., 2015; Kouadio et al., 2012; Ramos, 1975;
Torres & Ferreira, 2011) with maximum rainfall between May and July, and annual average
precipitation above 1500 mm. SST anomalies over Tropical South Atlantic (TSA) and El Niño
Southern Oscillation (ENSO) that interact with global circulation modulate the rainfall
variability in the ENEB (Andreoli & Kayano, 2007; Silva et al., 2018; Silva & Guedes, 2012,
Torres & Ferreira, 2011; Rodrigues et al. 2020). The very intense daily rainfall events of May
2022 were largely caused by the propagation EWD (Gomes et al., 2015), which in
combination with an anomalously warm tropical Atlantic and a humid and unstable
atmosphere near the east coast of Northeast Brazil favoured the development of convective
precipitation clouds in a sequence of days.

Figure 7: Correlation between rainfall (from GPCC dataset) over the region in Brazil and
global ERSST Sea Surface Temperatures for months Mar-May 2022, calculated over years
1891-2022.

4 Model evaluation

In the subsections below we show the results of the model validation for the 7-day and the
15-day events. The seasonal cycle is labelled 'reasonable' if it has one peak extending in time



to at least May. We note that the warm rains are not represented well in most of the models,
with the precipitation seasonal cycles declining around May, thus missing the warm rain
season from May-Aug. The only exception is CNRM-CM6-1-HR from the HighResMIP
experiment, where the seasonal cycle is consistent with the observed cycle (Fig. S1 for
observations; Fig. S3 (a-c) for climate models).

  Table3. Evaluation results for the climate models considered for the attribution analysis of
annual maximum 7-day rainfall in the year 2022, over the study region. The table contains

qualitative assessments of seasonal cycle and spatial pattern of precipitation from the models
(good, reasonable, bad) along with estimates for dispersion parameter, shape parameter and
event magnitude. The corresponding estimates for observations are shown in blue. Based on
overall suitability, the models are classified as good, reasonable and bad, shown by green,

yellow and red highlights, respectively.

Observations
Seasonal

cycle
Spatial
pattern Dispersion

Shape
parameter Event magnitude

Station
0.243 (0.187 ...

0.293)

-0.14 (-0.43 ...

0.019) 33.95

Model
Threshold for 500-yr

return period

FLOR historical-rcp45 (5) reasonable good 0.272 (0.248 ...

0.292)

-0.049 (-0.12 ...

0.017)

45.188

CNRM-CM6-1-HR HighResMIP (1) good good 0.190 (0.157 ...

0.215)

-0.042 (-0.21 ...

0.10)

27.773

EC-Earth3P-HR HighResMIP (1) reasonable good 0.298 (0.230 ...

0.347)

0.046 (-0.15 ...

0.21)

19.848

HadGEM3-GC31-HM HighResMIP (1) reasonable reasonable 0.265 (0.199 ...

0.311)

-0.12 (-0.29 ...

0.066)

38.075

HadGEM3-GC31-MM HighResMIP (1) reasonable reasonable 0.306 (0.245 ...

0.355)

0.088 (-0.10 ...

0.21)

45.157

AM2.5C360 AMIP (10) reasonable good 0.291 (0.274 ...

0.313)

-0.042 (-0.12 ...

0.011)

47.952

MPI-ESM-LR / REMO2015 CORDEX

SAM-22 (1)

bad bad 0.161 (0.115 ...

0.191)

-0.13 (-0.46 ...

0.089)

33.551

NorESM1-M / REMO2015 CORDEX

SAM-22 (1)

reasonable reasonable 0.230 (0.179 ...

0.269)

0.027 (-0.34 ...

0.23)

29.41

MPI-ESM-MR / RegCM4-7 CORDEX

SAM-22 (1)

bad bad 0.428 (0.333 ...

0.489)

0.35 (0.079 ...

0.73)

233.28

NorESM1-M / RegCM4-7 CORDEX

SAM-22 (1)

reasonable reasonable 0.568 (0.442 ...

0.662)

-0.29 (-0.70 ...

0.059)

79.042

MPI-ESM-LR / REMO2009 CORDEX

SAM-44 (1)

bad bad 0.145 (0.114 ...

0.171)

0.028 (-0.15 ...

0.19)

41.279

CSIRO-Mk3-6-0 / SMHI-RCA4 CORDEX

SAM-44 (1)

bad bad 0.120 (0.0950 ...

0.139)

-0.0020 (-0.23 ...

0.23)

11.452

EC-EARTH / SMHI-RCA4 CORDEX SAM-44

(1)

bad bad 0.176 (0.128 ...

0.205)

0.24 (0.026 ...

0.49)

67.528

IPSL-CM5A-MR/ SMHI-RCA5 CORDEX

SAM-44 (1)

reasonable bad 0.262 (0.204 ...

0.308)

-0.14 (-0.34 ...

0.016)

50.407

MIROC5/ SMHI-RCA4 CORDEX SAM-44

(1)

reasonable reasonable 0.335 (0.268 ...

0.387)

0.045 (-0.17 ...

0.24)

58.86



HadGEM2-ES / SMHI-RCA4 CORDEX

SAM-44 (1)

reasonable reasonable 0.313 (0.236 ...

0.378)

-0.36 (-0.54 ...

-0.24)

37.861

MPI-ESM-LR / SMHI-RCA4 CORDEX

SAM-44 (1)

bad bad 0.202 (0.154 ...

0.236)

-0.078 (-0.29 ...

0.11)

40.587

NorESM1-M / SMHI-RCA4 CORDEX

SAM-44 (1)

reasonable reasonable 0.383 (0.301 ...

0.442)

-0.13 (-0.34 ...

0.021)

43.636

GFDL-ESM2M / SMHI-RCA4 CORDEX

SAM-44 (1)

bad bad 0.294 (0.223 ...

0.351)

0.24 (-0.10 ...

0.58)

117.06

CanESM2/ UCAN_WRF341I CORDEX

SAM-44 (1)

reasonable reasonable 0.393 (0.300 ...

0.460)

0.14 (-0.017 ...

0.31)

54.355

  Table4. Evaluation results for the climate models considered for the attribution analysis of
annual maximum 15-day rainfall in the year 2022, over the study region. The table contains

qualitative assessments of seasonal cycle and spatial pattern of precipitation from the models
(good, reasonable, bad) along with estimates for dispersion parameter, shape parameter and
event magnitude. The corresponding estimates for observations are shown in blue. Based on
overall suitability, the models are classified as reasonable and bad, shown by yellow and red

highlights, respectively.

Observations Seasonal cycle
Spatial
pattern Dispersion

Shape
parameter Event magnitude

Station
0.243 (0.188

... 0.290)
-0.23 (-0.48
... -0.084) 23.95

Model
Threshold for

1000-yr return period

FLOR historical-rcp45 (5) reasonable, drops early

in the season

good 0.235 (0.213 ...

0.249)

-0.078 (-0.20

... -0.029)

31.702

CNRM-CM6-1-HR HighResMIP (1) good good 0.142 (0.111 ...

0.168)

0.089 (-0.10 ...

0.24)

25.141

EC-Earth3P-HR HighResMIP (1) reasonable good 0.271 (0.210 ...

0.315)

-0.011 (-0.23

... 0.17)

14.484

HadGEM3-GC31-HM HighResMIP

(1)

reasonable reasonable 0.257 (0.182 ...

0.305)

-0.14 (-0.32 ...

0.048)

28.53

HadGEM3-GC31-MM HighResMIP

(1)

reasonable reasonable 0.275 (0.227 ...

0.313)

0.073 (-0.11 ...

0.21)

32.734

AM2.5C360 AMIP (10) reasonable, drops early

in the season

good 0.277 (0.254 ...

0.299)

-0.043 (-0.11

... 0.017)

37.222

MPI-ESM-MR/ REMO2015 CORDEX

SAM-22 (1)

bad bad 0.159 (0.113 ...

0.194)

-0.18 (-0.48 ...

0.047)

27.019

NorESM1-M / REMO2015 CORDEX

SAM-22 (1)

reasonable reasonable 0.246 (0.188 ...

0.288)

-0.15 (-0.38 ...

0.018)

18.967

MPI-ESM-MR / RegCM4-7 CORDEX

SAM-22 (1)

bad bad 0.341 (0.259 ...

0.401)

0.32 (0.077 ...

0.58)

147.17

NorESM1-M / RegCM4-7 CORDEX

SAM-22 (1)

reasonable reasonable 0.578 (0.459 ...

0.674)

-0.21 (-0.79 ...

0.21)

60.047

MPI-ESM-LR / REMO2009 CORDEX

SAM-44 (1)

bad bad 0.196 (0.153 ...

0.231)

-0.19 (-0.39 ...

0.015)

28.936

CSIRO-Mk3-6-0 / SMHI-RCA4

CORDEX SAM-44 (1)

bad bad 0.117 (0.0920

... 0.139)

0.030 (-0.22 ...

0.27)

10.389



EC-EARTH / SMHI-RCA4 CORDEX

SAM-44 (1)

bad bad 0.163 (0.127 ...

0.190)

0.10 (-0.18 ...

0.33)

42.4

IPSL-CM5A-MR / SMHI-RCA5

CORDEX SAM-44 (1)

reasonable bad 0.251 (0.180 ...

0.301)

-0.12 (-0.30 ...

0.062)

41.431

MIROC5 / SMHI-RCA4 CORDEX

SAM-44 (1)

reasonable reasonable 0.257 (0.211 ...

0.306)

-0.095 (-0.46

... 0.14)

32.603

HadGEM2-ES / SMHI-RCA4 CORDEX

SAM-44 (1)

reasonable reasonable 0.311 (0.238 ...

0.379)

-0.39 (-0.75 ...

-0.26)

27.893

MPI-ESM-LR / SMHI-RCA4 CORDEX

SAM-44 (1)

bad bad 0.221 (0.175 ...

0.263)

-0.18 (-0.51 ...

-0.012)

30.67

NorESM1-M / SMHI-RCA4 CORDEX

SAM-44 (1)

reasonable reasonable 0.355 (0.273 ...

0.416)

-0.068 (-0.28

... 0.12)

34.438

GFDL-ESM2M / SMHI-RCA4

CORDEX SAM-44 (1)

bad bad 0.211 (0.160 ...

0.248)

0.090 (-0.10 ...

0.30)

55.91

CanESM2 / UCAN_WRF341I

CORDEX SAM-44 (1)

reasonable reasonable 0.366 (0.285 ...

0.427)

0.13 (-0.096 ...

0.31)

43.094

5 Multi-method multi-model attribution

This section shows Probability Ratios and change in intensity ΔI for models that passed the
validation tests and also includes the values calculated from the fits with observations. All
models labelled 'reasonable' have been included, although we note that these models all miss
some essential physics.

Table 5: Precipitation threshold for the 500-yr return period 7-day annual maximum
precipitation, Probability Ratio and change in intensity for the models that passed the

validation tests, for the study region.

Model / Observations
Threshold for return
period 500 yr

Probability ratio PR
[-] Change in intensity ΔI [%]

75 stations 33.956 mm/day 4.3e+4 (1.7 ... ∞) 27 (0.95 ... 59)

FLOR historical-rcp45 (5) 45 mm/day 1.5 (1.1 ... 2.0) 3.5 (0.71 ... 6.4)

CNRM-CM6-1-HR HighResMIP (1) 28 mm/day 0.27 (0.0020 ... 43) -11 (-23 ... 5.0)

EC-Earth3P-HR HighResMIP (1) 20 mm/day 0.49 (0.0092 ... 9.8) -8.5 (-33 ... 25)

HadGEM3-GC31-HM HighResMIP
(1) 38 mm/day 54 (0.089 ... ∞) 18 (-15 ... 55)

HadGEM3-GC31-MM HighResMIP
(1) 45 mm/day 0.91 (0.057 ... 25) -1.4 (-28 ... 30)

AM2.5C360 AMIP (10) 48 mm/day 0.74 (0.18 ... 2.2) -2.6 (-12 ... 6.4)

NorESM1-M / REMO2015 CORDEX
SAM-22 (1) 29 mm/day 0.15 (0.000077 ... ∞) -19 (-37 ... 14)

MIROC5 / SMHI-RCA4 CORDEX
SAM-44 (1) 59 mm/day 4.1 (0.19 ... 5.1e+5) 19 (-10 ... 63)

HadGEM2-ES / SMHI-RCA4
CORDEX SAM-44 (1) 38 mm/day ∞ (2.5e+2 ... ∞) 16 (-0.23 ... 35)



Table 6: Precipitation threshold for the 1000-yr return period 15-day annual maximum
precipitation, Probability Ratio and change in intensity for the models that passed the

validation tests, for the study region.

Model / Observations
Threshold for return
period 1000 yr

Probability ratio PR
[-] Change in intensity ΔI [%]

75 stations 23.945 mm/day ∞ (0.12 ... ∞) 15 (-7.5 ... 47)

FLOR historical-rcp45 (5) 32 mm/day 1.7 (1.2 ... 3.0) 3.6 (1.5 ... 6.1)

EC-Earth3P-HR HighResMIP (1) 14 mm/day 0.57 (0.015 ... 1.7e+3) -5.0 (-28 ... 26)

HadGEM3-GC31-HM HighResMIP
(1) 29 mm/day 5.4 (0.019 ... ∞ ) 7.0 (-15 ... 37)

HadGEM3-GC31-MM HighResMIP
(1) 33 mm/day 0.49 (0.0045 ... 5.6) -9.3 (-33 ... 17)

AM2.5C360 AMIP (10) 37 mm/day 0.58 (0.095 ... 2.3) -4.2 (-15 ... 7.3)

NorESM1-M / REMO2015 CORDEX
SAM-22 (1) 19 mm/day 0.020 (0.0000080 ... ∞) -23 (-41 ... -0.83)

MIROC5 / SMHI-RCA4 CORDEX
SAM-44 (1) 33 mm/day 42 (0.67 ... ∞) 18 (-8.6 ... 50)

HadGEM2-ES / SMHI-RCA4
CORDEX SAM-44 (1) 28 mm/day ∞ (14 ... ∞) 10 (-4.4 ... 25)

NorESM1-M / SMHI-RCA4
CORDEX SAM-44 (1) 34 mm/day 0.32 (0.00024 ... ∞) -9.0 (-35 ... 32)

6 Hazard synthesis

Figure 8: Synthesis of intensity change (left) and probability ratios (right), when comparing
the 7-day annual maximum event with a 1.2degC cooler climate.



Figure 9: Synthesis of intensity change (left) and probability ratios (right), when comparing
the 15-day annual maximum event with a 1.2degC cooler climate.

For both the 7-day annual maximum and the 15-day annual maximum we calculate the
probability ratio as well as the change in magnitude of the event in the observations and the
models. If the models do not pass the validation tests we do not use the results. We synthesise
the ones that pass with the observations to give an overarching attribution statement.
Observations and models are combined into a single result in two ways if they seem to be
compatible. Firstly, we neglect common model uncertainties beyond the model spread that is
depicted by the model average, and compute the weighted average of models and
observations: this is indicated by the magenta bar. As, due to common model uncertainties,
model uncertainty can be larger than the model spread, secondly, we also show the more
conservative estimate of an unweighted average of observations and models, indicated by the
white box around the magenta bar in the synthesis figures.

As explained in Section 4, the models are not able to produce the rainfall in May to August,
which has a warm convective character. Therefore results of the models that passed our
validation tests are considered to be of limited value only. Moreover, the model estimates of
changes in intensity and probability do not show a consistent change. Because of these model
deficiencies we can not use the synthesised values that combine observations with models. We
therefore conclude that observations show a trend towards heavier precipitation on the 7-day
and 15-day time scales, although with large uncertainties due to natural variability. We first
need to improve the representation of this type of warm rainfall in models before we can
present model results with more confidence.

7 Vulnerability and exposure

In addition to assessing the changing risk of the rainfall that contributed to the flood hazard, in
this section we look at the vulnerability and exposure factors that increased the likelihood of
impacts in the affected region.

Despite Brazil's significant socio-economic progress (e.g. 29 million people lifted out of
poverty between 2003-14), inequality, disparities, marginalisation and displacement remain



major drivers of vulnerability (Kakinuma et al, 2020, Lemos et al., 2016; Dolman et al.,
2015), further amplified by climate change impacts (Debortoli et al., 2017; Rasch, 2015).
Vulnerabilities and their implications are unequally distributed across rural/urban divides and
ethnicities (Gubert et al., 2016, Oliveira et al., 2020).

Northeast Brazil is the country’s poorest and least developed region (Hummell, Cutter and
Emrich, 2016). It has the lowest average municipality equivalized median monthly household
income at R$429, (Rasch, 2017). Cities and urban planning can highlight underlying
inequities especially for marginalised or disadvantaged ethnic groups and residents of
slave-descendant communities (Gubert et al., 2017).

7.1 History of floods

The Pernambuco and Alagoas states, and in particular their coastal areas, have a long history
of flooding. The risk of recurring floods is well-known among affected communities (Ardaya
et al., 2017). For example, floods in 2010 mainly impacted these two states and resulted in
entire villages being destroyed, 120,000 people displaced and destruction of roads, bridges,
ICT infrastructure and more (Relief Web, 2010). In Pernambuco, the losses and damages were
estimated at R$ 3,4 billion (Banco Mundial, 2012a), while in Alagoas resulted in R$ 1,89
billion (Banco Mundial, 2012b).

In 2017 another flood in the same states resulted in local states of emergency being declared
and over 55,000 people displaced. Between 1995 and 2019, Pernambuco had accumulated
losses in disasters that reached R$ 29,1 billion - the fourth position between the 27 federative
units in Brazil - while Alagoas had R$ 8,9 billion - the 15th position (Banco Mundial, 2020).
The number of housing units destroyed in disasters were 20,300 in Pernambuco (3rd position
in the country) and 16,400 in Alagoas (6th position) (Banco Mundial, 2020). Over the past
years, several participatory actions including crowd-sourcing geo-information have been
piloted to improve flood risk management (Mansur et al., 2017; Horita et al., 2015; Degrossi
et al., 2014).

7.2 Land-use planning and urbanisation

Situated on the coast of the Atlantic Ocean at the confluence of the Capibaribe and Beberibe
rivers and over 70 canals, the Metropolitan Region of Recife (MRR) was amongst the hardest
hit by the 2022 flood (de Souza Leao, Andrade and Nascimento, 2021). Recife, the state
capital of Pernambuco, is one of the most at risk cities in Brazil with high population density
(7,602 people/km2) and poverty rates (40 percent) paired with significant Black, Brown and
Indigenous communities (approximately 59 percent combined) (Hummell, Cutter and Emrich,
2016; City Population, 2021; Global Future Cities, n.d.; IBGE Census, 2010).

The region has seen rapid urbanisation and increased population density caused by population
increases and migration. The broader northeast Brazil region is subject to recurring droughts
that have resulted in mass migrations to already overcrowded urban centres (Marengo at al.,
2021). For instance, between 1950 and 2000, the urban population of Recife tripled (IBGE,
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2020) - based on the 2010 National Census, there were 1,5 million people living in the city
which has landscape characteristics (low average altitude, flat areas, a water table close to the
surface) which make it particularly exposed to hydrometeorological hazards (de Souza Leao,
Andrade and Nascimento, 2021). According to the census, 13.4% of the city’s populations
lives in high and very high risk-prone areas; 644, 620 in Jaboatão dos Guararapes, 29.2%
lived in in landslide or flood-prone areas mapped by the Brazilian Geological Survey (IBGE,
2018).

Figure 10: Housing inequalities in Recife before the 2022 disaster (Photo: Miguel Angel Trejo Rangel,
October 14, 2021)

In line with other regions in Brazil, the urban frontier expands with little oversight and
planning, and often results in concentration of informal settlements on flood-prone areas or
on/near steep slopes at risk of landslides (Gomes et al., 2012). Many of the rural migrants live
in informal settlements which presently make up nearly one-fourth of the Metropolitan
Region of Recife’s 3,7 million residents (Koster, 2020). Falling beyond official municipal
boundaries, homes in these informal settlements are often situated on steep hillslopes and
along floodplains (Marengo at al., 2021). The houses built are often shacks made of wood,
metal sheets, mud bricks, without a foundation established on firm ground (bedrock). This,
coupled with the removal of vegetation, destabilises the soil making it prone to landslides
when soaked, a phenomenon documented in several hills in the Recife municipality (Maia
Lins et al., 2020).

The creation of impervious surface and changes to local hydrology and geology has also had
an impact on increasing flood and landslide risk, hampering the effectiveness of drainage and
sanitation systems, and increasing flood risk (de Souza Leao et al., 2021; Cerqueira et al.,
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2019). Urban sanitation and drainage infrastructure is inadequate, usually due to a lack of
planning and assessments deemed incompatible to current needs of most cities around the
country (Rodrigues et al., 2022).

7.3 Risk management - preparedness, early warning early action, and response

Planning and preparedness play a key role in reducing the vulnerability and exposure of
people and assets during disasters.

In Brazil, different flood risk management laws and policies exist at national, provincial, and
municipal scale. For instance, 1,538 (27.6%) of 5,570 municipalities have urban plans which
take into account flood risks (IBGE, 2020) - in the Northeast region, 18.7% of municipalities
have these plans. Brazil’s National Center for Monitoring and Early Warning of Natural
Disasters (CEMADEN) was created in July 2011, after the devastating Petropolis floods and
landslides (Marchezini et al. 2017). Sitting at the Ministry of Science, Technology and
Innovation. CEMADN currently monitors 1038 cities in Brazil - with landslide and flood
maps which were developed by the Brazilian Geological Survey (CPRM, 2022) - and is
responsible for issuing alerts to the National Secretariat of Civil Defense (SEDEC).

The State of Pernambuco’s Water and Climate Agency (APAC) also has a flood early warning
system by which alerts are issued to the public. The warnings range from yellow to orange to
red, the combination of probability of occurrence and the intensity of the rain events (APAC
2022). APAC also participates in the training of Municipal Civil Defences, explaining how the
weather forecasts work and the three types of alerts (yellow, orange and red), based on the
daily weather forecasting and tendencies updates. All representatives of the municipal Civil
Defences have direct communication with the APAC Situation Room, and from these updates
and trainings, each municipality is responsible for updating its disaster risk reduction (DRR)
and contingency plan annually - 24.3% of cities have DRR plans in Pernambuco (IBGE,
2020). In addition to media outlets, policies enacted in response to previous flood events
enabled the alerts to be issued through SMS, although the text of a current bill under
consideration by the Recife Assembly suggests these SMS warnings are "unavailable",
justifying the introduction of this additional bill to strengthen Recife’s response programs (Bill
32/2022 April 2022). Finally, each municipality is responsible for developing procedures for
preventive measures in case of disasters. Every year, the members of the Municipal Civil
Defences are trained to update such measures for the rainy season in the State of Pernambuco.

For this event, the severe rainfall that contributed to the floods and landslides was relatively
well-forecasted albeit with a wide range, with sources such as GLOFAS forecasting flooding
between a 2–5-year average to over a 20 year average (Start Network, May 27, 2022; ECHO,
May 31 2022). Conditions were monitored by agencies such as APAC (internal
communication) and warning alerts were issued - notably, the municipal government of Recife
issued a red alert for heavy rains on May 27. Technical meetings were held between APAC
and Pernambuco Civil Defense to support prevention actions based on weather and climate
conditions. Federal, State and Municipal disaster response included search and rescue, first aid
provision, and the restoration of essential services all which would have reduced the impacts
of the events once they had occurred (Ministério do Desenvolvimento Regional, 2022).
Pernambuco State Government has announced to also provide financial support for disaster

https://link.springer.com/article/10.1007/s10661-019-8020-0#Abs1
https://saneamentobasico.com.br/wp-content/uploads/2022/06/29652-Article-337947-1-10-20220510.pdf
https://www.ibge.gov.br/estatisticas/sociais/saude/10586-pesquisa-de-informacoes-basicas-municipais.html?=&t=destaques
https://www.researchgate.net/publication/320537685_Sistema_de_alerta_de_risco_de_desastres_no_Brasil_desafios_a_reducao_da_vulnerabilidade_institucional
http://www.cprm.gov.br/publique/Gestao-Territorial/Prevencao-de-Desastres/Setorizacao-de-Riscos-Geologicos-5389.html
https://www.ibge.gov.br/estatisticas/sociais/saude/10586-pesquisa-de-informacoes-basicas-municipais.html?=&t=destaques
https://www.ibge.gov.br/estatisticas/sociais/saude/10586-pesquisa-de-informacoes-basicas-municipais.html?=&t=destaques
https://publico.recife.pe.leg.br/consultas/materia/materia_mostrar_proc?cod_materia=MTE5NjMz
https://publico.recife.pe.leg.br/consultas/materia/materia_mostrar_proc?cod_materia=MTE5NjMz
https://uploads.geobingan.info/attachment/07036d4a22bd4a34860266cd5580244f.pdf
https://reliefweb.int/report/brazil/brazil-landslides-and-floods-update-brazil-civil-defense-inmet-brazil-cemaden-media-echo-daily-flash-31-may-2022
https://reliefweb.int/report/brazil/brazil-landslides-and-floods-update-brazil-civil-defense-inmet-brazil-cemaden-media-echo-daily-flash-31-may-2022
https://www.gov.br/mdr/pt-br/noticias/comitiva-federal-ira-a-pernambuco-neste-domingo-disponibilizar-apoio-para-regioes-afetadas-pelas-fortes-chuvas


recovery to the affected population (Bill 17810 June 2022).

Recent research also points to potential policy implementation gaps that may need
improvement to increase the effectiveness of climate and disaster risk reduction policies and
structures. Political action has historically followed on the heels of large disasters and this
reactive approach to the challenges has not (yet) led to a complete integration of all levels and
links in the warning systems chain. This is a politically charged subject made more complex in
times of political instability and economic recession (Marchezini et al. 2017). If left
unresolved, this situation may contribute to increasing vulnerability and risks of disasters.

7.4 Conclusions

The rainfall that resulted in flash floods in coastal northeastern Brazil was very rare (a 1-500
to 1-1000 year event), and we can reasonably assume that such a rare event will be an
impactful one. The extreme nature of the floods made it so that exposure was the main
determinant of impact, although long-term impacts and recovery will likely be mediated by
socio-economic, demographic and governance factors. An increase in urbanisation, especially
unplanned and informal in low-lying flood-prone areas and steep hillsides have increased the
community exposure to these hazards. The need for improving the linkage between early
warning and prevention actions is highlighted. It is unclear to what extent the warning helped
reduce the impacts, even though some actions were taken by Civil Defense. However it was
not possible to prevent fatalities because of the magnitude of the extreme rainfall events. This
indicates the need to review and strengthen the linkage between weather warnings and the
process that would lead to improved anticipatory action based on those warnings. This region
also generally has an infrastructure deficit (e.g. housing, roads, water and sanitation etc.). As
new infrastructure is built, there is an opportunity to increase resilience by accounting for
increasing risks in the design and location, instead of reverting to outdated design standards.

Data availability

Almost all data are or will soon be available via the Climate Explorer.
For access to weather station data please contact the National Institute of Meteorology
(INMET) and National Water and Sanitation Agency (ANA).
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Supplementary Material

Figure S1:  Seasonal cycle of precipitation from station data over the study area, based on
station data. The seasonal cycle was determined fromm data for the years 1960 to 2022
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Figure S2: Spatial pattern of average rainfall over March-Aug, based on GPM-IMERG
dataset. The spatial pattern was calculated from data over 2001-2022



Figure S3:  Seasonal cycle of precipitation from over the study area from (a) GFDL models
(b) HighResMIP models and (c) CORDEX models



Figure S4: Spatial pattern of average rainfall over March-Aug, from (a) GFDL models (b)
HighResMIP models and CORDEX models



Figure S5: (a) GEV fit with constant dispersion parameter, and location parameter
scaling proportional to GMST, for the average over 75 stations from 1970-2022. No
information from 2022 is included in the fit. Left: Annual 7-day (a) and 15-day (c)
average rainfall as a function of the smoothed GMST. The thick red line denotes the
time-varying location parameter. The vertical red lines show the 95% confidence
interval for the location parameter, for the current, 2022 climate and the fictional,
1.2ºC cooler climate. The 2022 observation is highlighted with the magenta box.
Right: Return time plots for the climate of 2022 (red) and a climate with GMST 1.2 ºC
cooler (blue), for the 7-day average (b) and the 15-day average (d). The past
observations are shown twice: once shifted up to the current climate and once shifted
down to the climate of the late nineteenth century. The markers show the data and the
lines show the fits and uncertainty from the bootstrap. The magenta line shows the
magnitude of the 2022 event analysed here.



Figure S6: (a) GEV fit with constant dispersion parameter, and location parameter
scaling proportional to GMST, for the average over all 389 stations from 1960-2022.
No information from 2022 is included in the fit. Left: Annual 7-day (a) and 15-day (c)
average rainfall as a function of the smoothed GMST. The thick red line denotes the
time-varying location parameter. The vertical red lines show the 95% confidence
interval for the location parameter, for the current, 2022 climate and the fictional,
1.2ºC cooler climate. The 2022 observation is highlighted with the magenta box.
Right: Return time plots for the climate of 2022 (red) and a climate with GMST 1.2 ºC
cooler (blue), for the 7-day average (b) and the 15-day average (d). The past
observations are shown twice: once shifted up to the current climate and once shifted
down to the climate of the late nineteenth century. The markers show the data and the
lines show the fits and uncertainty from the bootstrap. The magenta line shows the
magnitude of the 2022 event analysed here.


