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Key results: 

● In early April 2021 several days of severe frost affected central Europe following an 
anomalously warm March. This led to  very severe damages in grapevine and fruit 
trees, particularly in France, where young leaves had already unfolded in the warm 
early spring; 

● We analysed how human-induced climate change affected the temperatures as 
extreme as observed in spring 2021 over central France, where many vineyards are 
located. Analysing observations and 132 climate model simulations we found that 
without human-caused climate change, such temperatures in April would have been 
even lower  by 1.2°C [0.7°C;1.6°C], compared to  preindustrial conditions; 

● However, observed human-caused warming also affected the earlier occurrence of 
bud burst, characterized here by a growing-degree-day index value. This observed 
effect is stronger than the decrease in spring cold spells, thus  exposing young leaves 
to more winter-like conditions with lower minimum temperatures and longer nights.  
The intensity of extreme frosts occurring after the start of the growing season such as 
those of April 2021 has increased by about -2°C, with a large range of uncertainty [-
3.3°C to -0.6°C]; 

● This observed  intensification of growing-period frosts is attributable, at least in part, to 
human-caused climate change with each of the 4 large climate model ensembles 
(including a total of 132 model simulations) used here simulate a cooling of growing-
period annual temperature minima of 0.5°C [0°C to 1°C] since pre-industrial, making 
the 2021 event 60% more likely [20%-120%]; 

● Models accurately simulate the observed decreasing  intensity in the lowest spring 
temperatures, but underestimate the observed trends in growing-period frost 
intensities;   

● Models all simulate a further intensification of frosts occurring in the growing period for 
future decades. The probability of an exceptional growing-period frost event such as 
that of 2021 (with a return period of 9 years in the current climate) is found to increase 
significantly by about 40% [20%-60%] in a climate with global warming of 2°C relative 
to pre-industrial.  



 

 

1. Introduction 
Frost days and cold spells are decreasing in frequency in the northern latitudes (IPCC, 2014; 
van Oldenborgh et al., 2019). Yet, severe cold spells continue to pound many mid-latitude 
areas, due to the occasional occurrence of polar air being transported well into lower latitudes 
as a consequence of the chaotic motion of Rossby waves. When occurring in spring, the 
invasion of polar air into central and Southern Europe can create devastating frosts such as 
happened in early April 2021. In such cases, when young leaves and flowers  have started to 
develop in fruit trees or grapevines, frost leads to massive damage in agriculture.  

The 2021 frost event which took place from 6 to 8 April was exceptional with daily minimum 
temperatures below -5°C were recorded in several places, leaving no chance to save 
grapevines and fruit trees by frost management strategies  (e.g as local heating  from 
braseros) in many places. The cold temperatures led to broken records at many weather 
stations (see Figure 1, right-hand-side). Unfortunately, this cold event happened a week after 
an episode of record-breaking high March temperatures also in many places in France and 
Western Europe (Figure 1, left-hand-side). This sequence led the growing season to start 
early, with bud burst occurring in March and the new leaves and flowers left exposed to the 
deep frost episode that followed. 

 

Figure 1: Stations with March (left) high records broken and April (right) low 
records broken in 2021 (since at least 20 years) in France. 

The frost impacts were widely covered by the French national media. According to the French 
Ministry of Agriculture, “several hundreds of thousands of hectares were affected” and it was 
assumed to be “probably the biggest agricultural disaster in the beginning of the 21st century”1. 
According to the National Federation of Farmers' Unions (FNSEA), a third of the country’s 
wine production could be lost and the combined losses in wine production and the 
arboriculture sectors would amount to more than 4 billion euros2. In the Rhône region, farmers 
estimated that the cold spell may have destroyed more than 80% of their harvests, affecting 

                                                
1 https://www.lexpress.fr/actualites/1/societe/gel-la-plus-grande-catastrophe-agronomique-
du-siecle_2148731.html 
2https://www.reuters.com/article/us-france-wine-frost-idUSKBN2C915L , 
https://www.leparisien.fr/economie/gel-plus-de-4-milliards-deuros-de-pertes-estimees-dans-la-
viticulture-et-larboriculture-15-04-2021-24ZD6LV3V5A4LAH2UBCJ6RSVUA.php 



 

 

wines such as Côte-Rôtie, Côtes du Rhône and Condrieu. In Burgundy, “at least 50%” of the 
harvests were reportedly lost, with the prestigious Chablis AOC especially hard hit3 . 

The occurrence of such an event called for investigating the role of climate change. The cold 
outbreak occurred with a specific weather pattern called the “Greenland Blocking”, identified 
as one of the 4 main flow patterns that occur most frequently or are most stationary  (Vautard 
et al., 1990; Michelangeli et al., 1995). The combination of polar air advection, cloud-free sky 
and still long nights led to hours of intense frost. Such dynamical events are not observed to 
have become more frequent (Screen et al., 2013) despite the ongoing debate on the role of 
narrower sea ice extent favoring the occurrence of blocking anticyclones (Barnes and Screen, 
2015). The trend in circulation in April is the same as in winter, an intensification of westerly 
flows that is not related to the weather observed in 2021 (not shown). However, the influence 
of climate change on the evolution of daily minimum and maximum temperatures in a transition 
month such as April could be significant, especially for agriculture when it comes to threshold 
crossings. 

The exceptional nature of the warm period preceding the 2021 event led to advancing 
phenology. Recent studies show that despite the regression of frost days, the advance in the 
start of the growing season has increased the number of frost days occurring in the growing 
season in several places worldwide, including in Europe (Liu et al., 2018). Using several 
indices for grapevine exposure, it has been found that the date of the latest frost day has not 
regressed as fast as the date of growing season start (Sgubin et al., 2018). So far however no 
formal attribution study of a “growing period frost” has been carried out quantifying the role of 
anthropogenic climate change in these observed trends.. This article is devoted to an 
attribution study of the “growing period frost” event witnessed in April 2021. It uses several 
indices characterizing cold temperatures in the growing season. It also uses the well-
established attribution methodology described in Philip et al. (2020) and van Oldenborgh et 
al. (2021). 

In section 2, the indices chosen for the event definition are introduced. In Section 3, trends in 
observations are analysed, and in section 4, trends in 5 model ensembles are analysed. In 
Section 5 a conclusion and discussion are proposed. 

2. Event definition and indices used 
Despite the extent of the frost event that occurred between 6 and 8 April and the subsequent 
damages, we focus here on central/northern France in order to investigate a relatively 
homogeneous, mostly plain or low-elevation area. The area of concern, represented in Figure 
2b encompasses [-1°- 5°E; 46°-49°N]. It covers most of the grapevine agriculture areas of 
Champagne, Loire Valley and Burgundy which were identified as specifically vulnerable 
regions under climate change (Sgubin et al., 2018). The area also covers regions with high 
crop and fruit production. The area is represented in Figure 2b. 

 

 

                                                
3 https://www.liberation.fr/environnement/agriculture/pertes-liees-au-gel-les-agriculteurs-commencent-
a-sortir-leur-ardoise-20210416_HTV23WV4ABH4NGSDI5HN7NAKI4/ 
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Figure 2. a) Minimum temperatures on 6 April 2021 in Europe from the E-OBS 
database (see Section 3); b) focus on France with a higher resolution dataset, 
using the Anastasia data (Météo-France, Besson et al, 2019). The study area is 
shown in this panel by the bounded box in red; stars indicate the location of the 3 
stations used to assess local trends; c) Spatial distribution of the Growing Degree 
Day index in Europe on 5 April 2021 as calculated from E-OBS. 

In order to examine the robustness of the assessment to the event definition several event 
definitions are used, accounting for some phenological aspects. In each case, the “event” is 
defined as the yearly minimum temperature (TNn) obtained under specific conditions, and 
then averaged over the area, or taken at station locations. A basic reference conditioning is 
the fixed-season minimum temperature: the TNn is calculated over the April-July months 
(TNnApr-Jul). The second index accounts for phenology. The TNn is calculated conditioned 
to the Growing Degree Day above 5°C (GDD) being larger than thresholds characterizing bud 
burst conditions, which depend on species. In this study, our aim is not to tie thresholds to 
specific plants' phenology but to provide a general overview for different thresholds. GDD is 
calculated with a starting date of the previous winter solstice as in Garcia de Cortazar-Atauri 
et al. (2009), which gives the formula for the GDD at day t during year y as: 

 

with TM the daily mean temperature. In 2021, the values of GDD obtained on the day before 
the frost events in the concerned area vary in the range 150°C.day to 350°C.day, with an 
average value on 5 April of 259°C.day. This value is high for this calendar day (rank=14th 
since 1921) but the record value was obtained in 2020, with a mean GDD of 320°C.day. Given 
the range of values taken in the domain, we considered 3 thresholds for GDD: 250°C.day as 
a central value, and 150°C.day and 350°C.day as sensitivity experiments. This range of values 
also helps to capture different types of species that could be impacted (early to late bud-burst 
plants). The GDD range studied also corresponds to the bud burst values of grapevine species 
as found in Garcia de Cortazar-Atauri et al. (2009). For each GDD threshold, the yearly 
minimum TN value (TNnGDD250, TNnGDD150 and TNnGDD350) is calculated over 



 

 

subsequent days and until the end of July at each grid point and then averaged over the 
domain. Despite the fact that the average characterizes the mean lowest temperature that can 
occur after GDD threshold crossing, the average can mix several dates as the GDD threshold 
crossing and the yearly minimum does not necessarily occur on the same date over the whole 
domain. In 2021, for instance, the TNnGDD250 was already reached during the 6-8 Apr 
episode for most of the area, but not in the easternmost part and in some other parts, because 
GDD did not exceed 250°C.day during the April frosts.  

In order to focus more on specific phenological periods when young leaves and flowers are 
sensitive to frost after bud burst and flowering, we also defined indices over ranges of GDD 
values. The number of possibilities are large, in most cases providing similar results. The 
analysis is reported here for the range 250-350°C.day. This index is again calculated by grid 
points before being averaged spatially, or is taken at stations. 

Event attribution methods used in this study are well documented in previous studies. The 
general approach follows the classical event attribution probabilistic methodology (Philip et al., 
2020; van Oldenborgh et al., 2021), and has been used in many case studies now for heat 
waves (eg. Kew et al., 2019, Vautard et al., 2020), extreme precipitation (eg. Philip et al., 
2018), or more complex events such as wildfire weather (van Oldenborgh et al., 2020). It uses 
a stepwise approach analyzing observations with a Generalized Extreme Value (GEV) with 
covariate (generally smoothed Global Mean Surface Temperature - GMST or CO2 
concentrations as proxies for global warming), using ensembles of models validated on the 
event indices and their extreme value statistics by comparison with observations, and then 
using the GEV with the covariate fit to build a statistical model of the data under some 
assumptions. 

For all indices and models, as well as for observations, we used data in the 1951-2021 period 
for the GEV fit. For observations, the covariate is the smoothed observed GMST, while for 
models the mean surface air temperature of the models is used. In order to study cold 
extremes we fit the negative of the indices and transform back. For models we generally used 
the mean GSAT of the model itself. The only exception is the High Resolution Model 
Intercomparison Project (HighResMIP) SST-forced ensemble, for which the observed GMST 
was used. 

3. Observations and past trends 
The observations used here are the E-OBS v23e dataset of daily minimum temperatures  
extended in near real time for 2021. In Figure 3 we show the annual time series of the indices, 
together with trend statistics for the 1951-2020 period. We do not take into account 2021 to 
avoid selection bias in trend calculation. The Apr-Jul TNn has a slightly upward linear trend of 
+0.13°C/Decade, which is however not significant at the 90% (two-sided) level. By contrast, 
both TNnGDD250 and TNnGDD250-350 have a significant cooling trend of -0.21 and -
0.25°C/Decade respectively. The warming trend in TNnApr-Jul is partly due to larger values 
since 2000, but these higher values are not reflected in the other indices because GDD also 
has increased during this period, allowing lower daily minimum temperatures to be counted 
earlier in the season. We conclude that, on average, since 1950, extreme yearly minimum 
temperatures for GDD>250 have cooled by about 1.5-2.0°C. Very low growing-period frosts 
were also found in 1957 and1991, with lower values than in 2021.  



 

 

For different thresholds we also find cooling trends, however with lower significance. The 
significance of the signal remains weak and interannual variability is large. Interestingly, over 
the last 50 years (1971-2020) the trends have increased and become more significant (for 
instance +0.29°C/Decade, p<0.1 for TNnApr-Jul, and -0.37°C/Decade for TNnGDD250, 
p<0.1; see also Figure 4). 

a) 

 

b) 

 

Figure 3: a) Time series of the yearly indices and their respective linear trends; b) 
Same as a) but for TNnGDD250, TNnGDD150 and TNnGDD350. 

 

When considering trends in low extremes, the results are qualitatively similar but significance 
is increased when considering GEV fitting using the smoothed observed GMST as covariate 
instead of assuming a linear trend (see Table 1). From these observations, we conclude that 
the event, defined as minimum temperatures over Apr-Jul, has a return period of 160 years 
[at least 25 year], it is therefore a rare event in the current climate. However in a climate not 
altered by human activities, this would be about a 10-year event. Climate change has therefore 
largely decreased the probability of such an event, taken as TNnApr-Jul. By contrast, the 
minimum temperature, taken over the growing period as characterized by the GDD index, 
instead of fixed month, has significantly cooled by almost 2°C with varying uncertainty ranges 
depending on the chosen index. The only non-significant signal is found for earlier thresholds 
(eg. GDD>150 °C.days), which drive TNn to be mostly in the winter period. 

  



 

 

 

E-OBS statistics 
0 to 1.2° global warming 
level 

TNnApr-Jul TNnGDD250 TNnGDD250-350 TNnGDD150 TNnGDD350 

Observed 2021 (°C) -3.68°C -2.26°C -2.24°C -3.76°C 1.43°C 

Return Period 2021 (Yr) 160 [25;Inf] 9 [4;28] 16 [6.1;130] 12 [6-110] 2.2 [1.4-3.9] 

Return Period -1.2C (Yr) 10 [5.3;33] 110 [26;inf] 2100 [>65] 39 [>13] 10.0 [4.6;42] 

Probability Ratio 0.06 [0;0.2] 12 [2.0;inf] 130 [>2.4] 3 [>0.6] 4.6 [1.4;23] 

Intensity Change (°C) +1.4 [0.1;2.6] -2.0 [-3.2; -
0.7] 

-2.0 [-3.4,-0.45] -0.80 [-
2.1,0.37] 

-1.9 [-3.5,-
0.41] 

Table 1: Extreme value statistics and observations for the various indices and 
using the 1951-2020 period and a GEV fit with GMST covariate. Bold font denotes 
statistical significance. 

In addition to a domain-average analysis, we calculated trends for 3 specific stations in the 
domain (stars in Figure 2). We selected a subset of the Météo-France reference stations, 
yielding about 12 stations. To restrict the analysis, we selected 3 stations in grapevine regions 
(Beaucouzé: downstream Loire valley; Charnay-les-Mâcon: Burgundy; Charmeil: Saint-
Pourçain grapevine), with several characteristics: for Beaucouzé, light frost and non-
exceptional event (-1.3°C) but high GDD (321°C.day on 5 April); for Charnay-les-Mâcon: 
record frost (-4.4°C, with 266°C.day on 5 April), and for Charmeil: the most severe frost among 
the 12 regional stations (-6.6°C with 244°C.day on 5 April). Detection results are shown in 
Table 2, for these stations. We also restricted the analysis to the three main indices: TNnApr-
Jul, TNnGDD250 and TNnGDD250-350. In almost all cases, the trends are positive for the 
fixed season index and negative for the growing season period. However, almost no result  is 
statistically significant, as variability is dominating the signal (Table 2). 

 

 Beaucouzé Charnay-les-Mâcon Charmeil 

 Value 
Ret. Per. 

PR 
∆I 

Value 

Ret. Per. 

PR 

∆I 

Value 

Ret. Per. 

PR 

∆I 

TNnAprJul -1.3°C 
11 yr 

0.3 [0.02;1.2] 
1.4 [-0.3;3.0] 

-4.4°C 
>100 yr 

0.03 [0;0.9] 
1.5 [0.1;2.8] 

-6.6°C 
85 yr 

0.2 [0.01;7.2] 
1.2 [-0.7;3.0] 

TNnGDD250 -1.3°C 
5 yr 

1.4 [0.2;9.0] 
-0.4 [-2.2;1.8] 

-4.4°C 
>50 yr 

>1e-4 
0.2 [-2;2] 

-5.3°C 
18 yr 

3.0 [>0.2] 
-1.0 [-3;1] 

TNnGDD250-
350 

-1.3°C 
7 yr 

1.1 [0.14;7.2] 
-0.2 [-2.5;2.3] 

-4.4°C 
>90 yr 

Infinite 
0.3 [-2.0;2.6] 

-6.6°C 
83 yr 

>0.7 
-1.5 [-4;1] 

Table 2: Return periods, probability ratios and changes in intensities obtained from 
the observations at three stations located as in Figure 2b. Red color indicates a 
warming change and blue color a cooling change. 



 

 

4. Models 

4.1 Model ensembles 
For the attribution of the frost event, we use five model ensembles. The first model ensemble 
is the Euro-CORDEX (0.11° resolution, EUR-11) multi-model ensemble, composed of 75 
combinations (as of May 2021) of Global Climate Models (GCMs) and Regional Climate 
Models (RCMs) for downscaling (see Vautard et al., 2020 and Coppola et al., 2020 for the 
description of the ensemble which has increased since these publications). Each simulation 
consists of  a historical period simulation and a RCP8.5 scenario simulation with fixed aerosol 
concentrations. For the attribution of past evolutions historical and scenario are concatenated 
until 2020. Some simulations start in 1971, whereas most simulations start from 1951. Given 
that we need to use data from the previous year for starting GDD accumulation, and that some 
simulations were terminated in 2099, all yearly indices are calculated from their second 
simulation year (i.e. for some models in 1972) until 2098. The ensemble was bias-adjusted 
using the CDFt method (Vrac et al., 2016) using the daily minimum and the daily average 
temperatures from E-OBS. This method was assessed for use in climate services in Bartok et 
al. (2019), and showed good performance. We used statistics of the pooled ensemble, using 
data until 2021 for the GEV fit of the distributions. 

The second model ensemble used to study the influence of internal variability was the IPSL-
CM6A-LR model (see Boucher et al., 2020 for a description of the model). It is composed of 
32 extended historical simulations, following the CMIP6 protocol (Eyring et al., 2016) over the 
historical period (1850-2014) and extended until 2059 using all forcings from the SSP2-4.5 
scenario, with the exception of the ozone concentration which has been kept constant at its 
2014 climatology (as it was not available at the time of performing the extensions).  

Then, two other model ensembles were used. The first one is a selection of the CMIP6 
historical and SSP3-7.0 simulations. In this case, bias correction was not applied, and we 
selected the least biased simulations (see Appendix A for details). The second one used is a 
set of 10 SST-forced HighResMIP simulations (Haarsma et al. 2016). For the historical time 
period (1950-2014), the SST and sea ice forcings used are based on observed dataset, and 
for the future time period (2015-2050) the SST and sea ice are derived from CMIP5 RCP8.5 
simulations and a scenario as close to RCP8.5 as possible within CMIP6. This ensemble was 
bias-corrected, as detailed in the Appendix along with the details of each model used here. 

4.2 Model evaluation 
We compared the model GEV fit parameters over the overlapping model periods (1951-2020) 
in order to check the ability of models to simulate such extremes. Such ability was not 
confirmed for heat waves (eg. Vautard et al., 2020). In the current case, we found that model 
ensembles are compatible with the observations accounting for uncertainties (see Table 2) in 
most cases. We restrict the comparison to 2 indices for simplicity. For TNnGDD250 the fitted 
model scale parameter is compatible with the observed one except for HiResMip where the 
variability is too large. The shape parameter is very uncertain in observations, leaving all 
model fits compatible with them. The same occurs for the TNnApr-Jul, but in this case all 
models have an overestimated scale parameter (in terms of amplitude). Only Euro-Cordex 
appears to have a parameter compatible with observations. Given this evaluation, for the final 
model “weighted average” (see Philip et al., 2020), and to have a homogeneous set of 



 

 

ensembles only Euro-Cordex will be considered for the statistical evaluation of probability ratio 
and intensity change, while for the TNnGDD250 index, all ensembles but the HiResMIP 
ensemble will be considered. 

Model ensemble / 
Observation 

Index Scale parameter Shape parameter 

Observation TNnApr-Jul 1.21 [0.93;1.44] -0.23 [-0.41;-0.03] 

Euro-Cordex 1.41 [1.34;1.45] -0.22 [-0.25;-0.19] 

IPSL-CM6A-LR 1.55 [1.50;1.60] -0.16 [-0.18;-0.13] 

CMIP6 1.63 [1.55;1.69] -0.19 [-0.23;-0.15] 

HiResMIP-SST 1.53 [1.46;1.64] -0.30 [-0.36;-0.27] 

Observation TNnGDD250 1.43 [1.13;1.65] -0.19 [-0.54;+0.06] 

Euro-Cordex 1.52 [1.45;1.57] -0.24 [-0.26;-0.23] 

IPSL-CM6A-LR 1.19 [1.14;1.22] -0.18 [-0.22;-0.17] 

CMIP6 1.68 [1.59;1.74] -0.17 [-0.21;-0.14] 

HiResMIP-SST 1.96 [1.84;2.08] -0.11 [-0.18;-0.09] 

Table 2: Model evaluation, using 2 main indices (TNnApr-Jul and TNnGDD250). 
Results for TNnGDD250-350 are qualitatively similar to those for TNnGDD250. 

4.3 Simulated mean trends 
We analysed the trends in the various indices for growing period frosts for the IPSL ensemble 
and the Euro Cordex model ensemble in the form of histograms, in order to examine the 
variability across ensemble members. For the other ensembles the number of models  is not 
large enough hence not shown in the  histogram figures. For both ensembles, there is a large 
range of minimum temperature trends from April to May, which are almost all positive. The 
observed trend in the minimum temperature from April to May is close to the middle of the 
distribution for both ensembles. A large range of possibilities is also found for the trends of 
minimum temperature based on different GDD thresholds, with a large part of the simulations 
showing lower trends than the trends of the minimum temperature from April to May. The 
observed strong negative trend in minimum temperature after the GDD>250 threshold over 
the period 1971-2020 appears to be a fairly rare case, as it is at the tail end of the distribution 
for both ensembles. We conclude from these figures that, despite the general trend towards 
cooling of the growing period frosts, the expected trend, for a given singular member, can also 
be toward a warming, albeit with a lower chance than for a cooling. This large uncertainty also 
has to be taken into account in any adaptation strategy. 



 

 

 

 

Figure 4. Histogram of the daily minimum temperature trend calculated from (a) 
the IPSL ensemble, (b) the Euro-Cordex ensemble. The observations are 
represented with the vertical lines. The trends are calculated over the 1971-2020 
period for (green) GDD>250, (brown) 250<GDD<350 and (red) from April to May. 

4.4 Simulated growing period frost extreme trends and attribution 
Figures 4a-c show, as an example, the change in return period graphs for indices TNnApr-Jul 
and TNnGDD250 for the Euro-Cordex ensemble, and Table 3 shows the extreme value 
statistics for all indices for this ensemble as well as other ensembles used. Models show large 
agreement with observations on return periods for the preindustrial climate and for the fixed-
calendar TNn index (TNnApr-Jul), except for the IPSL-CM6 ensemble for which bias correction 
(which was only performed on the mean), did not fully correct the bias on extremes. The trends 
in all models seem however underestimated compared to observations for the indices with a 
GDD conditioning. 

Figure 5 shows the behaviour present in all model analysis: a clear, significant increase in 
TNnApr-Jul and a reverse trend sign for the TNnGDD250. Despite being weaker, it is 
nevertheless found significant for all ensembles (Table 3), showing a clear signal of increase 
in frost intensities when considered over the growing period, and with a threshold of 
250°C.days. Such a trend is also clear and significant in most ensembles when considering 
the sensitive range 250<GDD<350 where young leaves and flowers are vulnerable to frost. 
For the other indices, trends are also significant in most cases but not all. 



 

 

 

Figure 5. Return value vs. return period for EuroCORDEX and the indices 
TNnApr-Jul and TNnGDD250.  

 

Model ensemble / 
Observation 

Index  Probability 
Ratio 
2021 vs 2021 
-1.2°C 

Intensity 
change (°C) 
2021 vs 2021 
-1.2°C 

Observation TNnApr-Jul RP=160 [>25] 0.06 [8e-5;0.77] +1.4 [0.1;2.6] 

Euro-Cordex [75] 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 2021 

0.20 [0.10;0.30] 
0.45 [0.23;0.63] 

+1.0 [0.7;1.2] 
+0.36 [0.2;0.6] 

IPSL-CM6A-LR [32] 2021 vs p.i. 0.17 [0.11;0.23] +1.4 [1.2;1.6] 

CMIP6 [15] 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 2021 

0.26 [0.14;0.41] 
0.06 [<0.2] 

+1.0 [0.7;1.2] 
+0.80 [0.7;1.1] 

HiResMip [10] 2021 vs p.i. 0.06 [0.007;0.13] +1.6 [1.2;2.0] 

Model average 2021 vs p.i. 
2C vs 1.2C 

0.20 [0.14 0.24] 
0.16 [< 0.31]  

+1.16 [0.71 1.59] 
+0.58 [0.49; 0.77] 

Observation TNnGDD250 RP=9 [4.2-26] 12 [>2.0] -2.0 [-3.3, -0.6] 

Euro-Cordex 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 1.2C 

1.4 [1.0;1.8] 
1.4 [1.1 1.7] 

-0.30 [-0.56;-0.0] 
-0.34 [-0.50;-0.1] 

IPSL-CM6A-LR 2021 vs p.i. 1.5 [1.3;1.9] -0.32 [-0.50;-0.14] 

CMIP6 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 1.2C 

2.0 [1.6;2.5] 
1.4 [1.1;1.6] 

-0.78 [-1.0;-0.50] 
-0.33 [-0.5;-0.1] 

HiResMip 2021 vs p.i. 1.6 [1.2; 2.5] -0.71 [-1.42;-0.28] 

Model average 2021 vs p.i. 
2C vs 1.2C 

1.6 [1.2;2.2] 
1.4 [1.2;1.6] 

-0.46 [-0.95;+0.04] 
-0.34 [-0.45;-0.17] 



 

 

Observation TNnGDD150 12 [5;73] 3 [>0.6] -0.80 [-2.2;0.37] 

Euro-Cordex 2021 vs p.i. 3.7 [1.2;39] -0.30 [-0.55;-0.03] 

IPSL-CM6A-LR 2021 vs p.i. 1.16 [0.91;1.7] -0.09 [-0.30;+0.06] 

CMIP6 2021 vs p.i. 0.94 [0.62;1.1] +0.07 [-0.11;0.53] 

HiResMip 2021 vs p.i. 1.3 [1.0;1.9] -0.39 [-1.1;0.0] 

Observation TNnGDD350 2.2 [1.4;3.9] 4.6 [1.4;23] -1.9 [-3.5;-0.41] 

Euro-Cordex 2021 vs p.i. 1.1 [1.0;1.3] -0.30 [-0.59;+0.00] 

IPSL-CM6A-LR 2021 vs p.i. 1.9 [1.6;6.7] -0.28 [-0.50;-0.19] 

CMIP6 2021 vs p.i. 1.9 [1.6;2.4] -0.99 [-1.4;0.77] 

HiResMip 2021 vs p.i. 1.4 [1.0;1.6] -0.71 [-1.2;-0.0] 

Observation TNnGDD250-
350 

16 [6.3;120] 130  [>2.4] -2.0 [-3.4;-0.60] 

Euro-Cordex 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 2021 

1.6 [1.2;3.0] 
1.2 [1.0;1.9] 

-0.40 [-0.75;-0.10] 
-0.14 [-0.49;-0.03] 

IPSL-CM6A-LR  1.8 [1.3;2.3] -0.36 [-0.48;-0.15] 

CMIP6 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 2021 

1.3 [0.9;1.6] 
1.5 [1.2;1.9] 

-0.25 [-0.54;0.06] 
-0.40 [-0.59;-0.19] 

HiResMip 2021 vs p.i. 2.2 [1.1;4.8] -0.74 [-1.3;-0.05] 

Model average 
2C changes relative to 2021 (+0.8°C 

 1.6 [1.2; 2.0] 
1.3 [1.2; 1.7] 

-0.35 [-0.46; -0.19] 
-0.27 [-0.47; -0.15] 

Table 3: Extreme value statistics for all model ensembles and observations, with the GEV model fitted from data 
over the 1951-2021 period (removing the 2021 value only for the observation) for the past trends estimates, and 
over the 2000-2050 period for future trends (when estimating the changes for a 2°C warming above pre-industrial 
levels); We assume here that pre-industrial (p.i.) global warming level is -1.2°C cooler than the 2021 one, and 
therefore the 2°C is reached 0.8°C above the current level. In each cell, the first line corresponds to the values of 
the probability ratio and the intensity change obtained by using the same return period threshold as in the 
observation. This is done only in case of large discrepancy with observation return period. Numbers in blue indicate 
a decrease of TN, and in red an increase of TN. The last row indicates changes  for a 2C warming level. Boldface 
numbers indicate statistical significance against a “no change” assumption. 

Despite a qualitative agreement between models and observations on trends, models 
generally simulate weaker trends for the GDD-conditioned indices than observed, a fact that 



 

 

remains as of today unexplained, just as the underestimation in extreme temperatures in 
summer heat waves (see eg. Vautard et al., 2020; van Oldenborgh et al., in preparation).  

4.5 Future trends 
Minimum temperatures in spring or in the growing season are projected to have similar trends 
as in the past decades in the ensembles and scenarios considered here. Figure 6 shows 
evolutions of the ensemble-median and 10th and 90th percentiles for the ensembles having 
future trends in different scenarios (Euro-Cordex RCP8.5; CMIP6n SSP3-7.0). In both cases, 
the median of yearly minimum temperatures over the region continue to increase with mean 
values around 2°C while they are below frost level in 2021. By the end of the century, frost 
such as in 2021 will become a  very rare occurrence in April or after in these scenarios. 
However, frost can be expected earlier in the year, while at the same time the e growing 
season starts earlier. This can be seen in the development of the  TNnGDD250 index 
throughout the 21st century which shows a weak decreasing trend. It is noteworthy that in the 
second half of the century, the 90th percentile often nears or exceeds the 2021 value. More 
frequent events like the 2021 are therefore expected. 

 

Figure 6. Time evolution of the median (thick line), and the 10th and 90th 
percentiles (dashed lines) of the ensembles Euro-Cordex (75 members) and 
CMIP6 (15 members) for the indices TNnApr-Jul (Red) and TNnGDD250 (blue). 
The thick dashed lines represent the values reached in 2021 for each of the 
indices. 

In order to quantify these future trends using the global-warming level conditioned GEV fit, we 
restrict the analysis to the 2°C warming level above the preindustrial conditions, which is 
assumed to be 0.8°C above current level. This restriction is made to be on the safe side with 
potential nonlinearity of response of the extreme indices to global warming. Such nonlinearity 
is suggested in Figure 6 (left) for the Euro-Cordex model, with a steeper decrease of 
TNnGDD250 after the year 2000. The analysis is also restricted to Euro-Cordex and CMIP6 
as these ensemble are homogeneous across time (HiResMIP here is forced by observed 
SSTs until 2014 and GCM SSTs beyond) and have enough future data (IPSL-CM6A-LR only 
has data until 2030). In this future case the GEV fit is carried out over the 2000-2050 period, 
and probability ratios and intensity changes are given for events with a similar return period 
as the 2021 event. 



 

 

Results are shown along with attribution results in Table 3 . Extreme frosts beyond April 1st 
will continue to become less extreme. Euro-Cordex simulations project that the 2021 event, 
considered as a fixed-season minimum, will become about twice less frequent [factor between 
1.5 and 3] in a 2°C warmer climate, while the CMIP6 selection projects a reduction by a larger 
factor (between 3 and 50). In contrast, the growing-period extreme frost intensity is increasing, 
and the 2021 event with a GDD>250 is projected to have an increasing frequency by about 
30% [10% - 60%] for a 2°C warmer climate than preindustrial, in Euro-Cordex, and 40% [10%-
60%] for CMIP6 selections. The early growing season minimum temperatures frequency follow 
a similar evolution as the growing period extreme frost (see Table 3 and Figure 8). 

  



 

 

5. Synthesis, summary and discussion 
In Figure 7 we summarise the results of all the individual assessments described above for 
probability ratio and intensity change in the historical period. Given the large differences 
between models and observations for the growing-period indices TNnGDD250 and 
TNnGDD250-350, we do not combine the observational and model results to form a 
"synthesis" but instead we present the model weighted average for comparison with the 
observations. In the case of the first index, TNnApr-Jul, we also do not form a synthesis 
because only one model (ensemble), Euro-Cordex, passes the validation criteria. However, 
the two additional models (IPSL-CM6A-LR and CMIP6) that validate well for TNnGDD250 and 
TNnGDD250-350, give similar results to Euro-Cordex. Incorporating them in the weighted 
average allows a term for model spread to be included which, whilst having little impact on the 
best estimate, should improve the uncertainty assessment.  

While uncertainties are comparably large for the quantitative assessment of probability ratios 
there is a significant decrease in the likelihood of cold waves as defined above for TNnApr-
Jul. The event that has occurred in 2021, taken as a fixed-season extreme, has become 
extremely rare, with a return period of at least 25 years, and with a best estimate of 160 years. 
The intensity of a cold wave as observed in April is also decreasing, by a well-constrained 
best estimate of 1.2°C. For the GDD-based indices models and observations quantitatively 
disagree with respect to probability ratio and intensity, the qualitative results are however clear 
and show an increase in the likelihood of damaging frost as well as an increase in the intensity 
across all indices. A result that is corroborated by the fact that these trends continue under 
future warming (see below). This allows for a clear qualitative attribution of these trends to 
anthropogenic climate change with the model results serving as lower bounds.  

In Figure 8 we summarise the projected changes in probability and intensity between the 
present and +2°C climate, showing an unweighted average for the two model ensembles 
Euro-Cordex and CMIP6. Note that the CMIP6 selected ensemble did not pass the validation 
over the historical period for the first index, TNnApr-Jul, but it is included here as (i) it is 
included for the other two indices and we do not know how well it validates for the future, (ii) 
no synthesis is formed so the unweighted average shown is only of qualitative use. Probability 
ratios are less than unity for TNnApr-Jul, indicating that the current trend for decreasing 
frequency of cold snaps is likely to continue in the future. Projections indicate a decrease by 
a factor of about 5 in the type of event witnessed in 2021. Likewise, the projections for change 
in intensity indicate that Apr-Jul cold snaps will continue to warm, by a best-estimated increase 
of about 0.6°C. Growing-period minimum temperatures continue to decrease with a best 
estimate of about 0.3°C and an increase in frequency of about 40% with some variations 
among indices.  

 
 

 



 

 

 

 
Figure 7. Changes between the past and present: summary of observational 
(blue) and model (red) results for probability ratio (left) and change in intensity [°C] 
(right) in the three indices TNnApr-Jul (top), TNnGDD250 (middle) and 
TNnGDD250-350 (bottom). Extent of the bars gives 95% confidence intervals 
accounting for variability within the data sets and model spread (white) where 
appropriate, with the black marker indicating the best estimate. A weighted 
average of model results is shown in bright red. Note that, for the index TNnApr-
Jul, only Euro-Cordex passed the validation step but other models are included in 
the weighted average for reasons described in the text. 

    
 

 

 
Figure 8. Projected changes between the present and +2degC climate: summary 
of results for probability ratio (left) and change in intensity [°C] (right) in the three 
indices TNnApr-Jul (top), TNnGDD250 (middle) and TNnGDD250-350 (bottom). 
Extent of the bars gives 95% confidence intervals accounting for variability within 
the data sets, with the black marker indicating the best estimate. An unweighted 
average of the results is shown in bright red. 

 



 

 

While the growing season is starting earlier, necessary plant dormancy characteristics also 
change and the lack of chilling winter days may delay the bud burst in many species (Chuine 
et al., 2016). This effect is not taken into account here and could alter our results concerning 
changes in bud burst dates. Such dates are also dependent on species. We have tested the 
dependence on thresholds of a simple GDD index, which provide similar results than the 
central thresholds discussed in the synthesis. Dormancy effects, as well as other specific plant 
effects can only be studied through impact models, which was not the goal in this study. 

The applicability of our results at local scale is limited in quantitative terms. The local station 
analysis, and the trends histograms show that given locations are more likely to exhibit cooling 
of extreme growing-period temperatures than warming, but a warming cannot be excluded at 
these scales and at present day warming levels. 

The discrepancy between trends in models and in observations in the historical periods 
currently remains unexplained. It shows that either large variability inhibits an accurate 
estimation of trends of cold extremes or that other factors come into play which may not be 
well simulated such as trends in radiation or cloudiness as a response to either warming or 
aerosols. These factors should be investigated in future studies. 

Above all, the finding that trends identified up until now continue under future warming 
indicates that anthropogenic climate change is an important driver of the observed trends and 
suggests that the models indeed underestimate the effect of change due to forcing factors and 
that the discrepancy between observed and simulated trends is not entirely explainable by 
unmodelled factors other than human-induced climate change.  

In conclusion, we identify two key attributable effects, the decrease in likelihood and intensity 
of minimum temperatures and the increase of likelihood and intensity of minimum 
temperatures when conditioned on growing degree indices. These findings are consistent 
across the different lines of evidence pursued despite the quantitative differences. The GDD-
indices are however a crude representation of the vulnerability of different species to frost. 
Thus, our findings highlight that growing season frost damage is a potentially extremely costly 
impact of climate change already damaging the agricultural industry but to inform adaptation 
strategies for specific species impact-based modelling will need to complement our 
assessment.  

 

 



 

 

Annex I. Model ensembles description 
This annex provides more details about the model ensembles used in this study. 

1. EURO-CORDEX  
The Euro-Cordex ensemble is made of 75 simulations of 12 Regional climate models 
downscaling 8 Global Climate Models. The description of the ensemble is detailed in Vautard 
et al. (2021) and Coppola et al. (2020), but since this article publication the ensemble size 
passed from 55 models to 75 models. The reader is referred to this publication for a description 
and an assessment of this ensemble in the historical period. Daily mean and minimum 
temperatures were corrected at grid point level using the E-OBS observation dataset from 
1981 to 2020. Bias correction follows the method described in Vrac et al. (2016) refined in 
Bartok et a. (2019) and applied on daily data instead of hourly data. 

2. CMIP6 selected ensemble 
The CMIP6 multi-model ensemble is a set of global climate models, developed by several 
institutes around the world (Eyring et al., 2016). Here a subset of CMIP6 models are used, 
with historical and SSP2-4.5 experiments (Meehl et al. 2014; O’Neill et al. 2014, Vuuren et al. 
2014, and O’Neill et al. 2016) together spanning the period between 1850 and 2099 for tas 
and tasmin variables. 

In this case simulations were not bias-corrected but, instead, a selection of the least biased 
models was made together with a restriction to 3 members maximum for the ensemble. This 
is due to the fact that there was a large heterogeneity in the number of members for each 
model in CMIP6, and to avoid giving too much weight to a particular model. 

The selection criterion is the bias in both TNnApr-Jul and TNnGDD250 indices over the 1971-
2020 period. Typically, models biased by less than 2°C were kept. This led to 15-member 
multimodel ensemble with a selection of the following models: CanESM5 (3 members), 
CNRM-CM6-1 (1 member), CNRM-ESM2-1 (1 member), ACCESS-CM2 (3 members), EC-
Earth3-AerChem (2 members), EC-Earth3-Veg (2 members). 

3. IPSL-CM6 single model ensemble 
The IPSL-CM6A-LR model ensemble is a 32-member ensemble of the coupled climate model 
with the same name. The model is described in Boucher et al. (2020). Simulations start in the 
pre-industrial with slightly different initial conditions and are saved in this study for the whole 
historical period and beyond, until 2029. The ensemble has been used for attribution studies, 
for instance in the 2019 heatwave attribution described in Vautard et al. (2020). 

4. HighresMIP SST-forced ensemble 
The six HighResMIP models are: 1) CNRM-CM6-1-HR, 1 simulation is used, run by the CNRM 
(Centre National de Recherches Meteorologiques), CERFACS (Centre Europeen de 
Recherche et de Formation Avancee en Calcul Scientifique) (CNRM-CERFACS); 2) CNRM-
CM6-1, run by CNRM-CERFACS; 3) EC-Earth3P-HR, 3 simulations are used, run by EC-
Earth-Consortium; 4) EC-Earth3P (EC-Earth 3.2), 3 simulations are used, run by EC-Earth-
Consortium; 5) HadGEM3-GC31-HM(HadGEM3-GC3.1-N512ORCA025), 1 simulation is 



 

 

used, run by the Met Office Hadley Centre; and 6) HadGEM3-GC31-HM (HadGEM3-GC3.1-
N216ORCA025), 1 simulation is used, run by the Met Office Hadley Centre.  

Bias correction was performed on the HighResMIP simulations, using E-OBS (1981-2010) as 
reference. Daily mean temperature, minimum temperature, and GDD were bias-corrected 
respectively before the other indices were calculated, and each month was correctly 
separately. All the calculations were done on a grid-point base, then averaged spatially over 
the studied region. 

Table A1. Spatial grids of the HighresMIP models in high-, medium,-, and low-resolution 
groups used in this study. 
 

Model  High Medium Low DOI 

CNRM-CM6-1-
HR 

 720*360  https://doi.org/1
0.22033/ESGF/
CMIP6.1387 

CNRM-CM6-1   256*128 https://doi.org/1
0.22033/ESGF/
CMIP6.1375 

EC-Earth3P-HR 1024*512   https://doi.org/1
0.22033/ESGF/
CMIP6.2323 

EC-Earth3P  512*256  https://doi.org/1
0.22033/ESGF/
CMIP6.2322 

HadGEM3-
GC31-HM 

1024*768   https://doi.org/1
0.22033/ESGF/
CMIP6.446 

HadGEM3-
GC31-MM 

 432*324  https://doi.org/1
0.22033/ESGF/
CMIP6.1902 
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