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Main findings 

• The 2022 heatwave is estimated to have led to at least 90 deaths across India and 
Pakistan, and to have triggered an extreme Glacial Lake Outburst Flood in northern 
Pakistan and forest fires in India. The heat reduced India’s wheat crop yields, 
causing the government to reverse an earlier plan to supplement the global wheat 
supply that has been impacted by the war in Ukraine. In India, a shortage of coal led 
to power outages that limited access to cooling, compounding health impacts and 
forcing millions of people to use coping mechanisms such as limiting activity to the 
early morning and evening. 

• Gridded observations that correspond well to station data and capture India and 
Pakistan are comparably short (starting 1979). The exact return period of such a rare 
event is thus highly uncertain and depends on the length of the data as well as the 
fitted distribution. When combining information of the shorter dataset with a dataset 
that only covers India but for a longer time span (starting 1951) we estimate the 
return period to be around 100 years in today’s climate of 1.2C global warming. We 
thus use 1 in 100 years, as the event definition for the attribution study. 

• To increase the data available and determine the role of climate change in the 
observed changes we combine observations with 20 climate models and we 
conclude that human-caused climate change made this heatwave hotter and more 
likely.  

• Because of climate change, the probability of an event such as that in 2022 has 
increased by a factor of about 30. 

• The same event would have been about 1C cooler in a preindustrial climate. 

• With future global warming, heatwaves like this will become even more common and 
hotter. At the global mean temperature scenario of +2C such a heatwave would 
become an additional factor of 2-20 more likely and 0.5-1.5C hotter compared to 
2022.  

• We note here that our results are likely conservative; the relatively short lengths of 
observed data rendered it difficult to consider statistical fits that are more ideal for 
extremes. In large model ensembles more accurate fits indicate a larger increase in 
likelihood.    

• It is important to note that this early heatwave was accompanied by much below 
average rainfall and humidity and thus constituted a dry heatwave, rendering 
humidity much less important for health impacts than heatwaves occurring late in the 
season and in coastal areas.  

• In Pakistan and India, extreme heat hits hardest for people who must go outside to 
earn a daily wage (e.g. street vendors, construction and farm workers, traffic police), 
and consequently lack access to consistent electricity and cooling at home, limiting 
their options to cope with prolonged heat stress. 

• Rising temperatures from more intense and frequent heat waves will render coping 
mechanisms inadequate as conditions in some regions meet and exceed limits to 
human survivability. Mitigating further warming is essential to avoid loss of life and 
livelihood.  

• While some losses will inevitably occur due to the extreme heat, it is misleading to 
assume that the impacts are inevitable. Adaptation to extreme heat can be effective 
at reducing mortality. Heat Action Plans that include early warning and early action, 
awareness raising and behaviour changing messaging, and supportive public 
services can reduce mortality, and India’s rollout of these has been remarkable, now 
covering 130 cities and towns.  



 

 

1 Introduction 

Since the beginning of the 2022 meteorological summer, large parts of South Asia including 

India and Pakistan have been experiencing prolonged hot weather. The month of March was 

the hottest in India since records began 122 years ago according to the Indian Meteorological 

Department (IMD). Temperatures were consistently 3°C-8°C above average, breaking many 

decadal and some all-time records in several parts of the country, including the western 

Himalayas, the plains of Punjab, Haryana, Delhi, Rajasthan and Uttar Pradesh. The states of 

Odisha, Madhya Pradesh, Gujarat, Chhattisgarh, Telangana and Jharkhand also experienced 

heatwaves, in some areas severe, with temperatures ranging from 40°C–44°C in the last days 

of March. In Pakistan many individual weather stations recording monthly all-time highs in 

March1. The heatwave conditions continued into April, reaching its preliminary peak towards 

the end of the month. Around 300 large forest fires occurred in the country on April 28, a third 

of these in Uttarakhand. By April 29, almost 70 percent of India was affected by the heatwave. 

In Pakistan, temperatures above 49°C were recorded in Jacobabad in Sindh, and 30 percent 

of the country was affected by the heatwave. Towards the end of April and in May, the 

heatwave extended into the coastal areas and eastern parts of India.  

 

Heat waves are not uncommon in this part of the world in the pre-monsoon (MAMJ) season; 

however, prior studies report the occurrence of hot extremes in the later months, primarily May 

and June (see Figure S3 of Sharma and Mujumdar, 2017; IMD Climate Summary, 20152; 

20163). Further, earlier studies identify two regions of common occurrence of heat waves in 

India - the North-Central part and the Coastal Region of Eastern India (see Figure 1f of Ratnam 

et al., 2016). Observations have shown that the heat wave conditions were not common in 

March/April before 1990 over Pakistan, and the increase in such conditions afterwards is 

probably attributable to climate change (Zahid and Rasul 2012). After the monsoon onset, 

high temperatures combined with high levels of humidity becomes particularly fatal as was in 

the case of June’s 2015 heat wave which resulted in 3500 direct heat related deaths in India 

and Pakistan (Saeed et al. 2021).  

 

The heat wave of 2022 brought very high temperatures and associated impacts in large areas 

of these countries- nearly 70% of India, and 30% of Pakistan (Kumar. S, 07 May, 20224). 

Figure 1 shows average maximum temperatures over March and April and the respective 

anomalies over South Asia. 

 

 
1 http://www.pmd.gov.pk/cdpc/Pakistan_Monthly_Climate_Summary_March_2022.pdf 
2 http://rcc.imdpune.gov.in/Annual_Climate_Summary/annual_summary_2015.pdf 
3 http://rcc.imdpune.gov.in/Annual_Climate_Summary/annual_summary_2016.pdf 
4 https://www.arabnews.com/node/2073361/world 



 
Fig. 1: (a) March-April average daily maximum temperature for the year 2022 as observed in the CPC 

dataset. The study region is highlighted by the green polygon. (b) same as (a) for anomalies w.rt. 

1979-2022. 

 

In the months from December to April, northwest India and Pakistan receive precipitation 

through western disturbances which are upper level synoptic scale systems embedded in the 

subtropical westerly jetstream (Hunt et al. 2018). They are responsible for most of the winter 

precipitation, which is crucial for growing wheat (Hunt et al. 2019). A number of studies have 

indicated the role of the upper atmospheric subtropical jetstream in modulating South Asian 

Summer Monsoon (Saeed et al 2011) however, the role of the jetstream in impacting western 

disturbances under climate change is not well researched. Using an ensemble of Coupled 

Model Intercomparison Project (CMIP5) models, Hunt et al. 2019 reported a decrease in 

western disturbances’ frequency under all representative concentration scenarios and 

attributed it to the weakening and widening in the subtropical jet as well as upstream baroclinic 

vorticity tendency. In a recent 

study,https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.7560 Rashid et al. (2022) 

found that in early summer, La Nina conditions favour the positive geopotential height 

anomalies resulting in high pressure in the upper atmosphere, thus enhancing sinking motion 

and resulting in less cloudiness leading to the extreme higher surface temperature conditions 

over the region. Considering the ongoing La Nina conditions in the pacific, their findings are 

inline with the media advisories5 issued by Pakistan Meteorological Department (PMD) which 

reported a persistent upper atmosphere high pressure in its advisories of 15th March, 30th 

March, 25th April and 6th May 2022. Accordingly March and April were extremely dry, with 62 

and 73.6 percent less than normal rainfall reported over Pakistan1,6 and 71 percent below 

normal over India in March7 and 3 percent in April8, making the conditions favourable for local 

heating from land surface. Persistence of the heatwave since the end of March can thus be 

partly ascribed to the absence of rain-bearing western disturbances, and partly to the 

upper atmosphere high pressure resulting in lack of precipitation and subsequent hot 

weather. Figure 2, shows the percentage deviation averaged over the months of March 

and April from the thirty year climatological mean.  

 

 
5 https://nwfc.pmd.gov.pk/new/press-releases.php 
6 http://www.pmd.gov.pk/cdpc/Pakistan_Monthly_Climate_Summary_April_2022.pdf 
7 https://internal.imd.gov.in/press_release/20220402_pr_1551.pdf 
8 https://internal.imd.gov.in/press_release/20220519_pr_1634.pdf 

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.7560


 

Fig. 2: Percentage deviation of precipitation during Mar-Apr 2022 from the 1981-2010 climatology 

using NOAA Climate Prediction Center (CPC) Global Unified Precipitation data.  The study region is 

highlighted by the green polygon.  

Heatwaves are deadly and despite inhabitants of the most affected regions being used to high 

ambient temperatures, mortality increases dramatically when temperatures exceed 40°C 

(Desai et al., 2015; Rathi and Sodani, 2021; Rathi, Sodani and Joshi, 2021). The heatwave 

coincided with Ramadan, which affected the coping capacities of those fasting, particularly in 

Pakistan, and will likely have increased health impacts. The full extent of the impacts on life 

and livelihoods will only be known in several months’ time. Some of the most vulnerable groups 

of people have not yet started recovering from the impacts of the COVID-19 pandemic and 

the heatwave could exacerbate this situation.  

 

The extreme heatwave hit at the critical time right during the final period of the growing season, 

causing extensive impacts on the agricultural sector. Extreme heat, more than anything else, 

impacts productivity, cascading economic output and could exacerbate poverty. The 

populations of India and Pakistan are especially vulnerable to extreme heat (Azhar et al., 2017; 

Malik et al., 2012) notably because about 60 percent of India’s workforce9 and about 40 

percent of workers in Pakistan are in agriculture, where the bulk of labour is outdoors10,11 

leaving millions of people with the difficult choice of working during dangerous heat or forgoing 

their livelihoods. 

 

A particularly notable effect of these uncharacteristically early and prolonged hot conditions 

was the impact on wheat crops and yields in the wheat-growing regions of Northwest India, 

the so-called bread basket of the subcontinent, and Southern Pakistan, where the wheat 

harvest season lasts from February through May. As demonstrated in previous studies, 

anomalously high temperatures during these months can adversely affect grain filling and 

cause early senescence (Lobell et al., 2012), thus reducing yields (Zachariah et al., 2020). 

 
9 https://www.statista.com/topics/4868/agricultural-sector-in-india/#dossierKeyfigures 
10 https://www.fao.org/india/fao-in-india/india-at-a-glance/en/ 
11 https://www.fao.org/pakistan/our-office/pakistan-at-a-glance/en 

https://journals.sagepub.com/doi/abs/10.1177/09720634211011693
https://www.mdpi.com/1660-4601/14/4/357
https://www.fao.org/pakistan/our-office/pakistan-at-a-glance/en


Initial numbers indicate a 20% shortfall in all-India wheat yield this year due to terminal heat 

and heat waves12. An export ban on wheat from India (starting May 13) based on concerns 

about domestic food security is already putting further stress on global food prices and food 

security in a tight market given the war in Ukraine13. 

 

1.1 Event Definition  

 

In keeping with the unusual features of the hot conditions and the primary impacts, we define 

the event as the daily maximum temperature averaged over March and April for a 

homogeneous region covering the north-western parts of India and south-eastern Pakistan 

which witnessed the highest impacts during the extended hot condition (see Fig. 1). We take 

care to exclude the Himalayan mountain ranges in the northeast. We note here that we choose 

to focus on the maximum air temperature, as opposed to a more complex metric for heat 

stress because (i) historical observations of humidity are less reliable than temperature 

measurements in the relevant regions, (ii) the question of model fidelity becomes more 

complex when assessing multivariate extreme events (Sippel et al. 2016; Cannon et al. 2020) 

- a problematic constraint for a rapid attribution analysis and (iii) rainfall and temperature 

observations over India and Pakistan averaged over March-April (Fig. 2) suggest that the 

event exhibits the characteristics of a “dry heatwave”.  

 

 

1.2 Previous studies  

In most parts of the world there is very high confidence that the duration, intensity and 

likelihood of extreme heat has increased dramatically due to human-induced climate change. 

This is also the case in South Asia based on the recent IPCC AR6 assessment which 

concludes that there is a high confidence in an increase in the intensity and frequency of hot 

extremes in the region, as well as a high confidence in a human contribution to the observed 

increase in the intensity and frequency of hot extremes (Seneviratne et al. 2021; see in 

particular Table 11.7 in that chapter). This assessment is based on several lines of evidence: 

High confidence in significant increases in the intensity and frequency of hot extremes and 

significant decreases in the intensity and frequency of cold extremes is assessed based on 

the following publications (Zahid and Rasul, 2012; Sheikh et al., 2015; Donat et al., 2016; 

Rohini et al., 2016; Chakraborty et al., 2018; Dimri, 2019; Sen Roy, 2019; Dunn et al., 2020); 

there is also an assessed robust evidence of a human contribution to the observed increase 

in the intensity and frequency of hot extremes based on the following publications (Wehner et 

al., 2016; Pattanayak et al., 2017; Wang et al., 2017; van Oldenborgh et al., 2018; Seong et 

al., 2021). 

Nonetheless, heating signals are weaker in parts of India (Joshi et al., 2020; Rohini et al., 

2016; Mazdiyasni et al., 2017; van Oldenborgh et al., 2018; Sen Roy, 2019), which has been 

suggested to be partly due to the alleviation of anthropogenic warming by increased air 

pollution with aerosols and expanding irrigation (van Oldenborgh et al., 2018; Thiery et al., 

 
12https://www.reuters.com/world/india/after-five-record-crops-heat-wave-threatens-indias-
wheat-output-export-plans-2022-05-02/ 
13https://economictimes.indiatimes.com/news/economy/foreign-trade/why-did-india-suddenly-
ban-wheat-exports/articleshow/91597372.cms 

https://www.reuters.com/world/india/after-five-record-crops-heat-wave-threatens-indias-wheat-output-export-plans-2022-05-02/
https://www.reuters.com/world/india/after-five-record-crops-heat-wave-threatens-indias-wheat-output-export-plans-2022-05-02/
https://economictimes.indiatimes.com/news/economy/foreign-trade/why-did-india-suddenly-ban-wheat-exports/articleshow/91597372.cms
https://economictimes.indiatimes.com/news/economy/foreign-trade/why-did-india-suddenly-ban-wheat-exports/articleshow/91597372.cms


2020). However, unlike other world regions, the Indian/South Asian region is marked by 

the abundance of absorbing aerosols such as black carbon and dust. A coupled-chemistry 

General Circulation Modelling study (Mondal et al. 2020) found these absorbing aerosols 

were particularly abundant during hot extremes in north-west India, and thus actually 

contributed to the intensification of high temperatures during such events. Irrigation and 

crop intensification have been shown to lead to a cooling in some regions, in particular in North 

America, Europe, but also including India (Mueller et al., 2016b; Thiery et al., 2017, 2020; 

Chen and Dirmeyer, 2019; Mishra et al., 2020). However, these studies account for soil 

moisture at field capacity or as a percentage of soil saturation, using annual irrigated areas, 

thereby overlooking the fact that pre-monsoonal irrigation activities in India are only minimal, 

particularly when compared to the two major cropping seasons (Kharif and Rabi). A more 

realistic representation of irrigation must also account for practices unique to this part of the 

world, such as abundant groundwater pumping and flood irrigation in paddy fields (Devanand 

et al., 2019). Combined, this evidence suggests that - for the specific case of a March-April 

heatwave affecting north-west India and Pakistan - the importance of short-lived aerosols 

or an increase in irrigation in suppressing the warming effect of greenhouse gases (van 

Oldenborgh et al., 2018) might be smaller than previously thought.  

Earlier studies (van Oldenborgh et al., 2018) based on reanalysis data and for the 

months of May and June reported cooling trends in the same region. When analysing 

the same time period (1979-2013) for May/June and March/April in observational data 

from IMD (see supplementary Fig. S1), we indeed find no trends for May/June but strong 

positive trends over March and April. Including the most recent years (Fig. 3),  further 

strengthens the positive trends seen in March/April in IMD. The CPC dataset, while also 

showing positive trends in the study region, exhibits negative trends further south that 

are not present in the observed data. This suggests that, in addition to trends in heat 

extremes varying by season,  data assimilation methods might also contribute to 

negative trends seen in other parts of the country.   

 

Fig. 3: Trends in daily maximum temperature averaged over March-April from (a) CPC and (b) IMD 

datasets, considering the years 1979-2022. Stippling indicates trends that are significant at 10% 

significance level. 



Future projections do not show negative trends but consistently more intense heat waves of 

longer durations and occurring at a higher frequency over India (Murari et al., 2015; Mishra 

et al., 2017) and Pakistan (Saeed et al. 2017; Nasim et al., 2018).  

2 Data and methods 

2.1 Observational data 

For this study, we use the CPC gridded datasets for daily maximum temperature provided by 

the NOAA/OAR/ESRL Physical Sciences Laboratory, Boulder, Colorado, USA, available at 

0.5° x 0.5° resolution for the period 1979-present14. Additionally, we use gridded datasets of 

observed daily maximum temperature at 1° x 1° resolution for the period from January 1, 1951 

to April 30, 202215 provided by the India Meteorological Department16 (IMD; Srivastava et al., 

2009), as an additional observational product although its spatial extent is limited to within the 

geographical borders of India.  

 

To study the effect of climate change on temperature, we assume that the location parameter 

of the used distribution varies with the Global Mean Surface Temperature (GMST), an 

accepted measure of anthropogenic climate change (e.g., Luu et al., 2021; van Oldenborgh 

et al., 2017).  We use low-pass filtered estimates of GMST from the National Aeronautics and 

Space Administration (NASA) Goddard Institute for Space Science (GISS) surface 

temperature analysis (GISTEMP, Hansen et al., 2010 and Lenssen et al. 2019). 

 

2.2 Model and experiment descriptions 

We use six multi-model ensembles from climate modelling experiments using very different 

framings (Philip et al., 2020): Sea Surface temperature (SST) driven global circulation high 

resolution models, coupled global circulation models and regional climate models. 

The first model ensemble used in this study is the HAPPI ensemble (see Table 1), comprising 

of multiple 10-year runs of the historical world (2006-2015) and a future plus 2°C warmer world 

above pre-industrial levels. More details of the HAPPI model ensemble and their forcings as 

relevant to heat extremes are discussed in Wehner et al., 2018. The aerosol specifications for 

this ensemble are fixed to emulate the cooling effect from anthropogenic aerosols that may 

potentially be decelerating temperature rise over India (van Oldenborgh et al. 2018). As a 

result, the aerosol loading in the +2.0°C simulations is considerably lower than observed 

during 2006-2015 since it uses the aerosol boundary conditions from the high mitigation, 

RCP2.6 scenario (see Mitchell et al. 2017 for more details) where the cooling effect of 

aerosols would diminish as air quality controls are being implemented globally by many 

countries including India to lessen health impacts. 

 

Table 1: List of participating institutions, contributing models, resolution and number of ensemble 
members for the historical (2006-2015) and +2.0°C experiments of HAPPI17 Project used in this study. 

Each model and each experiment contains 100 ensemble members for a 10 year time period.  

 
14 https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html 
15 https://imdpune.gov.in/Seasons/Temperature/temp.html 
16 https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html 
17 Data Source: https://www.happimip.org/happi_data/  

https://www.happimip.org/happi_data/


Institution Model Name Horizontal Resolution 

(Latitude x Longitude) 

Available 
Ensemble 
Members 

CCCma CanAM4 Gaussian    2.7° x 2.813° 100 

ETH CAM4 Rectilinear  1.875° x  2.5° 100 

MIROC MIROC5 Gaussian    1.389° x 1.4°  100 

MPI-M ECHAM6-3-LR Gaussian   1.8° x 1.875° 100 

NCC NorESM1 Rectilinear  0.94° x  1.25° 100 

 
 

The second ensemble is the Coordinated Regional Climate Downscaling Experiment 

CORDEX-CORE over the West-Asia domain with 0.22 km resolution (WAS-22) (Teichman et 

al., 2021). The ensemble (see Table 2) consists of 3 regional climate models (COSMO-

crCLIM, REMO2015 and RegCM4) each downscaling 3 GCMs. It is important to note that for 

this ensemble, aerosols are kept constant with climatological values in RCMs so that the 

regional effects of changes in regional aerosol loadings are not accounted for, but the effects 

of aerosols from driving GCMs on boundary conditions are (Sea Surface Temperature, lateral 

boundary conditions). For RegCM, aerosols are not accounted for at all. The covariate used 

here is the Global Surface Air Temperature of the driving GCM. 

 

Table 2: List of models from the CORDEX-CORE (domain Western ASia, WAS-22). All experiments 

used a 0.22x0.22° grid (25 km) from the CMIP5 experiments and scenarios.  

GCM Downscaling 
RCM 

Institution 
(RCM) 

Short Name Aerosols 

HadGEM2-ES REMO2015 GERICS HADGEMr1-REMO Climatological 
aerosols 

MPI-ESM-LR REMO2015 GERICS MPIr1-REMO Climatological 
aerosols 

NCC-NorESM1-M REMO2015 GERICS NORESMr1-REMO Climatological 
aerosols 

EC-Earth (r12i1p1) COSMO-crCLIM ETH ECEARTHr12-COSMO Climatological 
aerosols 

MPI-ESM-LR COSMO-crCLIM ETH MPIr1-COSMO Climatological 
aerosols 

NCC-NorESM1-M COSMO-crCLIM ETH NORESMr1-COSMO Climatological 
aerosols 

MIROC5 RegCM4 ICTP MIROCr1-REGCM No aerosols 

MPI-ESM-MR RegCM4 ICTP MPIMRr1-REGCM No aerosols 

NCC-NorESM1-M RegCM4 ICTP NORESMr1-REGCM No aerosols 



 

 

In order to have a large number of data for extreme value statistics, given the rarity of the 

event, we also used a relatively large ensemble of 32 members performed with the IPSL-

CM6A-LR global climate model (see Boucher et al., 2020 for a description of the model and 

Bonnet et al., 2021, for a description of the ensemble). It is composed of 32 simulations over 

the historical period (1850-2014) following the CMIP6 protocol (Eyring et al., 2016) and 

extended until 2059 using the SSP2-4.5 scenario, with the exception of the ozone 

concentration which has been kept constant at its 2014 climatology (as it was not available at 

the time of performing the extensions). For this ensemble, we used as a covariate the multi-

member mean GSAT of the ensemble for each year.  

 

The fourth ensemble considered in this study is GFDL-CM2.5/FLOR. This is a fully coupled 

climate model developed at the Geophysical Fluid Dynamics Laboratory (GFDL; Vecchi et 

al., 2014) with horizontal resolution of 50 km for land and atmosphere and 1 degree for 

ocean and ice. The five ensemble simulations cover the period from 1860 to 2100, and 

include both the historical and RCP4.5 experiments driven by transient radiative forcing from 

CMIP5 (Taylor et al., 2012). Aerosols are specified based on output from the Model for 

Ozone and Related Chemical Tracers (MOZART) chemical transport model (Horowitz et al. 

2003, Delworth et al. 2006). Only the direct effect is incorporated. Any indirect effects are 

omitted.  

 

Another model ensemble we considered in this study is the HighResMIP SST-forced model 

ensemble (Haarsma et al. 2016), the simulations for which span from 1950 to 2050. The 

SST and sea ice forcings for the period 1950-2014 are obtained from the 0.25° x 0.25° 

Hadley Centre Global Sea Ice and Sea Surface Temperature dataset that have undergone 

area-weighted regridding to match the climate model resolution (see Table B). For the 

‘future’ time period (2015-2050), SST/sea-ice data are derived from RCP8.5 (CMIP5) data, 

and combined with greenhouse gas forcings from SSP5-8.5 (CMIP6) simulations (see 

Section 3.3 of Haarsma et al. 2016 for further details). The 1979-2022 period for which the 

observed data (CPC) is available is chosen for model evaluation, while the entire length of 

simulations upto the year 2022 is considered for the attribution analysis. Since these are 

SST-forced simulations, we used observed GMST as covariate.  

 

Lastly, we also examined a multitude of CMIP6 simulations (Eyring et al., 2016). For all 
simulations, the period 1850 to 2015 is based on historical simulations, while the SSP2-4.5 or 
the SSP5-8.5 scenario is used for the remainder of the 21st century. For the latter relatively 
large ensembles are available for some models, e.g. ACCESS-ESM1-5 or CanESM with 40 
and 50 ensemble members, respectively. We also note that in consideration of the previously 
described IPSL-CM6A-LR simulations with the SSP2-4.5 scenario and 32 ensemble 
members, consistent with the CMIP6 protocol, we refrain from including any additional IPSL-
CM6A-LR experiments from CMIP6.   
 

In this study, we follow the multi-method multi-model attribution that uses in addition to the  

observations, both transient and fixed climate model runs for making attribution 

assessments. Methods for observational and model analysis and for model evaluation and 

synthesis are used according to the World Weather Attribution Protocol, described in Philip 

et al. (2020), with supporting details found in van Oldenborgh et al. (2021), Ciavarella et al. 



(2021) and on the World Weather Attribution website18. The analysis steps include: (i) trend 

calculation from observations; (ii) model validation; (iii) multi-method multi-model attribution 

and (iv) synthesis of the attribution statement. 

 

2.3 Statistical methods 

In this approach, we calculate the return period, Probability Ratio (PR; the factor-change in 

the event's probability) and change in intensity of the event in order to compare the climate of 

today and the climate of the past, defined respectively by the GMST values of 2022 and the 

pre-industrial past (1850-1900, based on the Global Warming Index19). The difference in 

GMST between these two climates is currently 1.2 ℃. Additionally, we analyse the PR and 

change in intensity for the difference between a future +2.0 ℃ scenario (0.8 ℃ warmer than 

today) and the current climate. This approach is followed for both observations and the models 

with transient runs. While the CMIP6 data based on the historical and SSP5-8.5 simulations 

are analysed using the same statistical models as the main method, the parameter uncertainty 

is estimated in a Bayesian setting using a Markov Chain Monte Carlo (MCMC) sampler instead 

of a bootstrapping approach (see Ciavarella et al. 2021 for details).  The CMIP6 data based 

on the historical and SSP2-4.5 simulations use the main method. 

 

To statistically model the event under study, we use a Gaussian distribution that shifts with 

GMST. Using a Generalised Pareto Distribution (GPD) would have been a logical option as 

well, but the limited amount of data and the high return period lead to large uncertainties that 

make the results less useful. That means that in this analysis we study the extreme event in 

the context of moderate Mar-Apr temperature anomalies. A test using GPD did not hint at 

different results for the trend than presented in the next Sections, and the best estimate of 

the return period was also the same order of magnitude. However tests carried out with the 

large IPSL-CM6A-LR ensemble (32 members) shows that the Gaussian method may 

underestimate the probability ratio due to the negative shape of the temperature distribution 

tail. Fig. 4 shows the two fits obtained from this ensemble using the Gaussian (left panel) 

and the GPD distributions (with a threshold of 90% of data). There is a subtle departure from 

the data in the fitted Gaussian distribution far tail and the fit does not capture the curvature of 

the data, while this is captured by the GPD distribution. As a result, interestingly, this induces 

a large change in the probability ratio, with a best estimate of about 50 in the Gaussian case 

and 3300 in the GPD case. The results in terms of intensity changes are however not much 

changed. This result emphasizes the potential underestimation of the PRs using the 

Gaussian model for temperatures.  

 

 
18 https://www.worldweatherattribution.org/pathways-and-pitfalls-in-extreme-event-attribution  
19 https://www.globalwarmingindex.org  
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Fig. 4: Statistical model fits of the indicator distribution tails using the Gaussian model (left) and the 

GPD model (right), applied to the 32-member ensemble of IPSL-CM6A-LR, using the ensemble mean 

GSAT as a covariate. The return values are represented as a function of the return period; The purple 

line shows the return value corresponding to a 100-year event in the current climate. 

 

In addition to the transient data analysis, we use simulations from two model experiments, one 

for current conditions and one for a counterfactual 2degC warmer world with adjusted 

concentrations of CO2, other greenhouse gases, and aerosols. The probability ratio in this 

case, is estimated from the probabilities of the event from the counterfactual forcing 

experiments and the current forcing experiments. The threshold value for the model is 

estimated against the return period in the current climate, based on observed dataset(s). 

Thereafter, the return period in the counterfactual scenario is also calculated against this 

threshold. The probability ratio is simply the ratio of the two probabilities (or return periods). 

The same procedure is used for the estimation of change in intensity of the event, ΔI. 

Finally, results from observations and the models that pass the validation tests are 

synthesized into a single attribution statement.  

 

 

 

3 Observational analysis: return time and trend 

Fig. 5 shows the time-series of daily maximum temperature averaged over March-April over 

the study region, from CPC (1979-present; Fig. 5(a)) and for the Indian part of the region 

only from IMD (1951-present; Fig. 5(b)). These data agree with each other in terms of 

magnitudes, year-to-year variability and the positive trend between 1979-2022, justifying 

their use as complementing datasets for the rest of the analysis. 

 



Fig. 5: Time series of area-averaged March-April average of daily maximum temperature along with 

the ten-year running mean (shown by the green line) based on the (a) CPC and (b) IMD datasets.  

 

The left panels in Fig. 6 show the area-averaged March-April mean daily maximum 

temperatures in the study as a function of the global mean temperature, based on the gridded 

datasets from CPC (Fig. 6(a)) and IMD (Fig. 6(c)). For these datasets, the right panels (Fig. 

6(b,d)) show the return period curves in the present, 2022 climate and the past climate when 

the global mean temperature was 1.2 °C cooler. Although the CPC dataset has higher 

resolution and data concentration over the study region, this series is too short to get an 

estimate for the return period with enough confidence. Therefore, we calculate the return 

periods from IMD over the part of the study region in India, to verify the CPC-based estimate 

that forms the reference for the model analysis. Upon fitting Gaussian distributions, the best 

estimates of the return period of the 2022 event in the current climate emerges as 1-in-130 

year (Fig. 6(c)) and 1-in-103 year Fig. 6(d), respectively based on the CPC and IMD datasets. 

For subsequent analysis, we round these estimates  to the more communicable 1-in-100 year 

for the study region. 

 

 

 

 
Fig. 6: (a) Response of March-April mean daily maximum temperature average over the study region 

estimated from CPC records to change in global mean temperature. The thick red line denotes the 

time-varying mean, and the thin red lines show 1 standard deviation (s.d) and 2 s.d above. The 

vertical red lines show the 95% confidence interval for the location parameter, for the current, 2022 

climate and the hypothetical, 1.2ºC cooler climate. The 2022 observation is highlighted with the 

magenta box. (b) Return periods for the 2022 climate (red lines) and the 1.2ºC cooler climate (blue 

lines with 95% CI), based on CPC data. (c)  same as (a), but using IMD data. (d) same as (b), using 

IMD data. 

 



To ascertain the robustness of these datasets, we repeated the above analysis for four 

combinations of data lengths and sub-domains, as follows. For the first combination, we used 

CPC data (1979-2022) over the study region. The other three combinations included CPC 

(1979-2022) data, IMD data (1979-2022) and IMD data (1951-2022) over the study region but 

limited to India only. The results are summarized in Table 3. Overall, there is an agreement 

among the data combinations, in terms of the magnitudes, statistical properties and change 

in intensities, likely due to the homogeneity over the study region(s). The return periods and 

the probability ratios are also consistent among the combinations. However, it is worth noting 

that the uncertainty ranges are smaller upon including the entire datalength for IMD (1951-

2022). These results show that the choice of CPC dataset for the study region despite its 

shorter length for estimating the return period, is indeed justified and that the longer IMD 

dataset is a justified addition. 

 

 

 

 

 

 

Table 3. Summary of trend-fitting analysis performed for four combinations of data length and domain 

from the CPC and IMD datasets. Including the magnitude of the event, the estimated standard deviation 

(sigma), return period of the event in the 2022 climate (Ret Per 2022) and in the hypothetical pre-

industrial climate that is 1.2°C cooler (Ret Per -1.2°C), the change in intensity and the probability ratio 

(PR), including their uncertainty. 

Combinatio

n 

Magnitud

e 2022 

(degC) 

Sigma Ret Per 

2022 

Ret Per -1.2°C Change 

intensity 

(degC) 

PR 

CPC-

India/Pak 

1979-2022 

38.53 1.144 (0.849.. 

1.399) 

130 (20… 

8000) 

20048 (418… 

10^8) 

1.68(-0.019… 

3.667) 

155(0.94… 

10^6) 

CPC-India 

1979-2022 

38.582 1.1 (0.808… 

1.334) 

110 (15… 

4500) 

3450 (100… 

10^7) 

1.203 (-

0.349… 

3.061) 

33 (0.3… 

98000) 

IMD-1951-

2022 

38.373 1.051 (0.878… 

1.192) 

100 (25… 

1250) 

1550 (265… 

46865) 

0.923 (-

0.118… 

1.965) 

15 (0.7… 

600) 

IMD-1979-

2022 

38.373 1.084 (0.826… 

1.276) 

60 (10… 

1000) 

6000 (180… 

10^7) 

1.611 (-

0.054… 

3.353) 

110 (0.86… 

10^5) 

 

4 Model evaluation 

We assess the models’ fitness for purpose in three ways. Firstly, we qualitatively compare the 

seasonal cycles in models to observations, checking for the timing and relative amplitudes of 



peaks and troughs; secondly, we compare the spatial pattern of maximum temperatures 

averaged over Mar-Apr for a larger region (5°N-40°N, 60°E-100°E) and thirdly, we check if the 

parameters of the fitted statistical distribution (Gauss) in models are compatible with those 

from observations, as shown below.  

 

In this section we show the results of the model validation. Because we have many models 

that pass the validation tests labelled, we only use models that passed all validation tests with 

the label "good" for the model analysis. Table 4 shows all model validation results.  

 

Table 4: Evaluation results for the climate models considered for the attribution analysis of the March-

April mean of daily maximum temperature, for the study region. The table contains qualitative 
assessments of seasonal cycle and spatial pattern of precipitation from the models (good, reasonable, 
bad) along with estimates for dispersion parameter, and event magnitude. The corresponding estimates 
for the CPC and IMD datasets are shown in blue. Based on overall suitability, the models are classified 
as good,  reasonable and bad, shown by green, yellow and red highlights, respectively. 
 

Observations 

Seasonal 

  cycle 

Spatial 

  pattern Sigma 

Event 

  magnitude [oC] 

CPC (1979-2022)   1.14 (0.849 ... 1.40) 38.53 

IMD (1951-2022) - India 

  only   1.05 (0.878 ... 1.19) 38.373  

Model    
Threshold for 100-yr 
return period 

ECEARTHr12-COSMOcrCLIM 

  rcp85 (1) good good 1.41  (1.06 ... 1.65) 37.9 

MPIr1-COSMOcrCLIM 

  rcp85 (1) good good 1.02  (0.710 ... 1.26) 38.5 

NORESMr1-COSMOcrCLIM 

  rcp85 (1) good good 1.31  (1.06 ... 1.47) 38.2 

MIROCr1-REGCM 

  rcp85 (1) reasonable, good 1.09  (0.810 ... 1.30) 37.6 

MPIMRr1-REGCM 

  rcp85 (1) reasonable, good 1.22  (0.890 ... 1.47) 37 

NORESMr1-REGCM 

  rcp85 (1) reasonable, good 1.21  (0.870 ... 1.47) 36 

HADGEMr1-REMO 

  rcp85 (1) 

reasonable, 

  positive bias 

reasonable,  but 3-

6°C positive bias 0.930   (0.750 ... 1.05) 41.1 

MPIr1-REMO 

  rcp85 (1) 

reasonable, 

  positive bias 

reasonable,  but 3-

6°C positive bias 1.35   (1.07 ... 1.52) 41.1 

NORESMr1-REMO 

  rcp85 (1) 

reasonable, 

  positive bias 

reasonable,  but 3-

6°C positive bias 1.27   (1.01 ... 1.49) 40.6 

FLOR 

  (5) good good 1.25   (1.13 ... 1.37) 36.054 

HAPPI-CCCMA 

  happi2.0 (10) good good 1.06  (1.02 ... 1.11) 38.382 



HAPPI-ETH 

  happi2.0 (10) good good 1.24  (1.19 ... 1.29) 38.168 

HAPPI-MPI-1 

  happi2.0 (10) good good 1.65  (1.58 ... 1.73) 37.955 

HAPPI-NCC 

  happi2.0 (10) good good 1.17  (1.13 ... 1.22) 36.742 

HAPPI-MIROC 

  happi2.0 (10) good good 1.21  (1.15 ... 1.25) 41.064 

CMIP6_ACCESS1-CM2 

  Historical+SSP245 (1) reasonable reasonable 0.940 (0.756 ... 1.06) 38.551 

CMIP6_ACCESS ESM1-5 
Historical+SSP245 (1) good reasonable 1.06 (0.849 ... 1.22) 35.504 

CMIP6_BCC-CSM2-MR 
Historical+SSP245 (1) good reasonable 0.949 (0.761 ... 1.08) 38.045 

CMIP6_CanESM5 
Historical+SSP245 (1) bad reasonable 1.10 (0.849 ... 1.29) 39.535 

CMIP6_INM-CM4-8 
Historical+SSP245 (1) good good 1.11 (0.809 ... 1.32) 38.864 

CMIP6_INM-CM5-0 
Historical+SSP245 (1) good good 0.882 (0.669 ... 1.05) 39.345 

CMIP6_MIROC6 
Historical+SSP245 (1) good bad 1.74 (1.32 ... 2.02) 48.402 

ACCESS-CM2 
Historical+SSP585 (4) reasonable good 1.03 (0.982 ... 1.09) 39.005 

ACCESS-ESM1-5 (40) good good 1.18 (1.16 ... 1.20) 35.532 

AWI-CM-1-1-MR (1) reasonable reasonable 1.46 (1.31 ... 1.63) 36.692 

BCC-CSM2-MR (1) good good 1.18 (1.06 ... 1.32) 38.221 

CAMS-CSM1-0 (1) reasonable good 0.996 (0.898 ... 1.11) 39.864 

CMCC-CM2-SR5 (1) good good 0.812 (0.732 ... 0.904) 31.74 

CMCC-ESM2 (1) good good 1.02 (0.919 ... 1.14) 38.392 

CNRM-CM6-1 (1) good good 1.54 (1.39 ... 1.72) 37.987 

CNRM-CM6-1-HR (1) good good 1.30 (1.17 ... 1.45) 36.379 

CNRM-ESM2-1 (1) good good 1.40 (1.27 ... 1.57) 39.129 

CanESM5 (50) bad good 1.21 (1.19 ... 1.23) 39.872 



EC-Earth3 (6) good good 1.14 (1.09 ... 1.19) 38.032 

EC-Earth3-CC (1) good good 1.16 (1.04 ... 1.30) 37.902 

EC-Earth3-Veg (7) good good 1.12 (1.08 ... 1.17) 37.972 

EC-Earth3-Veg-LR (3) good good 1.13 (1.06 ... 1.20) 37.426 

FGOALS-g3 (3) bad reasonable 1.15 (1.09 ... 1.23) 37.842 

GFDL-CM4 (1) reasonable reasonable 1.29 (1.17 ... 1.45) 35.422 

GFDL-ESM4 (1) reasonable reasonable 1.14 (1.03 ... 1.28) 36.203 

GISS-E2-1-G (1) bad reasonable 1.27 (1.14 ... 1.41) 39.648 

HadGEM3-GC31-LL (4) good reasonable 1.07 (1.02 ... 1.14) 40.878 

HadGEM3-GC31-MM (4) good reasonable 1.13 (1.07 ... 1.20) 40.813 

INM-CM4-8 (1) good good 0.949 (0.851 ... 1.06) 38.488 

INM-CM5-0 (1) good good 0.907 (0.817 ... 1.02) 39.443 

KACE-1-0-G (3) reasonable reasonable 1.30 (1.22 ... 1.38) 41.728 

MIROC-ES2L (10) good reasonable 1.33 (1.29 ... 1.38) 40.619 

MIROC6 (50) good bad 1.77 (1.75 ... 1.80) 47.995 

MPI-ESM1-2-HR (2) reasonable good 1.24 (1.16 ... 1.34) 37.343 

MPI-ESM1-2-LR (30) reasonable good 1.22 (1.19 ... 1.24) 36.22 

MRI-ESM2-0 (6) good good 1.51 (1.44 ... 1.58) 36.189 

NESM3 (1) reasonable bad 1.08 (0.971 ... 1.20) 37.819 

NorESM2-MM (1) reasonable good 0.793 (0.712 ... 0.883) 36.103 

TaiESM1 (1) reasonable good 1.05 (0.942 ... 1.17) 39.29 

UKESM1-0-LL (5) good good 1.04 (0.993 ... 1.09) 40.308 



IPSL-CM6A-LR (32) good reasonable 1.15 (1.09 ... 1.19) 34 

CNRM-CM6-1 HighResMIP (1) good good 1.61 (1.32 ... 1.82) 39.666 

CNRM-CM6-1-HR HighResMIP 
(1) good good 1.29 (1.04 ... 1.46) 39.316 

EC-Earth3P HighResMIP (1) good good 1.45 (1.17 ... 1.64) 38.82 

EC-Earth3P-HR HighResMIP 
(1) good good 1.47 (1.01 ... 1.78) 38.155 

HadGEM3-GC31-HM 
HighResMIP (1) good good 1.26 (1.00 ... 1.44) 40.602 

HadGEM3-GC31-LM 
HighResMIP (1) good good 1.38 (1.12 ... 1.59) 40.581 

HadGEM3-GC31-MM 
HighResMIP (1) good good 1.21 (0.918 ... 1.42) 40.121 

MPI-ESM1-2-HR HighResMIP 
(1) good good 1.41 (1.05 ... 1.69) 36.667 

MPI-ESM1-2-XR HighResMIP 
(1) good good 1.57 (1.25 ... 1.83) 37.323 

 

5 Multi-method multi-model attribution 

This section shows probability ratios and change in intensity (ΔI) in the March-April averaged 
daily maximum temperature in the study region, based on both observations and model 
simulations. Tables 5-6 show these values relative to the present climate, for a past 1.2oC 
cooler climate and a future 2oC warmer world, respectively. It should be noted that only those 
models that passed the validation checks (labelled “good” in Table 4) are considered in this 
analysis. These are 20 models that cover the past and 19 models that cover the future. The 
full table for the ensemble including models labelled "reasonable" or" bad" is given in 
Supplementary Table S1. 
 
Table 5: Probability ratio and change in intensity when compared with a 1.2oC cooler climate, from  the 
models that passed the validation tests. 

 

Model / Observations Probability ratio PR [-] Change in intensity ΔI [OC] 

CPC (1979-2022) 1.5e+2 (0.94 ... 1.2e+6) 1.7 (-0.019 ... 3.7) 

IMD (1951-2022)- India only 15 (0.70 ... 6.0e+2) 0.92 (-0.12 ... 2.0) 

ECEARTHr12-COSMOcrCLIM rcp85 (1) 35 (3.0 ... 1.7e+3) 1.6 (0.53 ... 2.7) 



MPIr1-COSMOcrCLIM rcp85 (1) 1.1e+2 (11 ... 2.8e+3) 1.7 (0.87 ... 2.4) 

NORESMr1-COSMOcrCLIM rcp85 (1) 14 (0.70 ... 3.5e+2) 1.2 (-0.16 ... 2.4) 

FLOR (5) 6.2e+2 (3.6e+2 ... 1.2e+3) 2.4 (2.2 ... 2.5) 

CMIP6_ACCESS ESM1-5 
Historical+SSP245 (1) 1.1 (0.27 ... 4.7) 0.061 (-0.58 ... 0.68) 

CMIP6_INM-CM4-8 Historical+SSP245 
(1) 1.2e+2 (12 ... 1.9e+3) 1.4 (0.78 ... 2.0) 

ACCESS-ESM1-5 (40) 2.1 (1.6 ... 2.6) 0.30 (0.20 ... 0.41) 

BCC-CSM2-MR  (1) 34 (4.4 ... 2.3e+2) 1.3 (0.54 ... 2.1) 

CMCC-ESM2  (1) 12 (3.0 ... 55) 0.83 (0.38 ... 1.3) 

EC-Earth3  (6) 8.3 (5.2 ... 13) 0.80 (0.62 ... 0.98) 

EC-Earth3-CC  (1) 4.1 (1.7 ... 9.7) 0.56 (0.21 ... 0.92) 

EC-Earth3-Veg  (7) 9.0 (6.0 ... 14) 0.82 (0.66 ... 0.98) 

EC-Earth3-Veg-LR (3) 13 (5.6 ... 29) 0.95 (0.63 ... 1.3) 

INM-CM4-8  (1) 7.0 (1.2 ... 36) 0.62 (0.058 ... 1.2) 

INM-CM5-0 (1) 4.3e+2 (42 ... 4.3e+3) 1.6 (1.0 ... 2.1) 

UKESM1-0-LL  (5) 17 (9.3 ... 32) 0.96 (0.73 ... 1.2) 

IPSL-CM6A-LR (32) 58 (36 ... 88) 1.4 (1.3 ... 1.6) 

CNRM-CM6-1-HR HighResMIP (1) 2.3e+2 (9.9 ... 2.1e+4) 2.5 (1.1 ... 3.9) 

HadGEM3-GC31-HM HighResMIP (1) 38 (2.1 ... 9.9e+2) 1.4 (0.31 ... 2.4) 

HadGEM3-GC31-MM HighResMIP (1) 3.8e+2 (20 ... 2.6e+4) 2.4 (1.1 ... 3.7) 

 
 
Table 6: Projected probability ratio and change in intensity when compared with a 2oC warmer climate, 
from  the models that passed the validation tests. 

Model  Probability ratio PR [-] Change in intensity ΔI [OC] 

ECEARTHr12-COSMOcrCLIM rcp85 (1) 7.0 (5.0 ... 11) 1.1 (0.95 ... 1.2) 

MPIr1-COSMOcrCLIM rcp85 (1) 11 (7.0 ... 19) 1.3 (1.2 ... 1.4) 

NORESMr1-COSMOcrCLIM rcp85 (1) 6.0 (4.0 ... 9.0) 0.97 (0.84 ... 1.1) 



FLOR (5) 13 (11 ... 16) 1.6 (1.5 ... 1.6) 

HAPPI-CCCMA happi2.0 (10) 15 (14 ... 17) 1.3 (1.2 ... 1.4) 

HAPPI-ETH happi2.0 (10) 11 (10 ... 13) 1.3 (1.2 ... 1.4) 

HAPPI-NCC happi2.0 (10) 15 (13 ... 16) 1.6 (1.5 ... 1.7) 

HAPPI-MIROC happi2.0 (10) 9.8 (8.6 ... 11) 1.3 (1.1 ... 1.4) 

ACCESS-ESM1-5 (40) 3.0 (2.8 ... 3.2) 0.46 (0.43 ... 0.49) 

BCC-CSM2-MR  (1) 10 (5.8 ... 18) 0.93 (0.70 ... 1.2) 

CMCC-ESM2  (1) 17 (9.3 ... 33) 0.93 (0.76 ... 1.1) 

EC-Earth3 (6) 4.7 (4.0 ... 5.5) 0.59 (0.53 ... 0.66) 

EC-Earth3-CC  (1) 4.1 (2.8 ... 6.2) 0.57 (0.41 ... 0.74) 

EC-Earth3-Veg  (7) 4.4 (3.8 ... 5.1) 0.57 (0.51 ... 0.63) 

EC-Earth3-Veg-LR  (3) 4.5 (3.5 ... 6.0) 0.61 (0.50 ... 0.72) 

INM-CM4-8 (1) 8.6 (4.8 ... 15) 0.68 (0.49 ... 0.88) 

INM-CM5-0  (1) 28 (14 ... 61) 0.99 (0.80 ... 1.2) 

UKESM1-0-LL  (5) 6.7 (5.5 ... 8.2) 0.68 (0.62 ... 0.74) 

IPSL-CM6A-LR (32) 6.5 (5.5 ... 7.3) 0.94 (0.84 ... 1.0) 

 
 

6 Hazard synthesis 

For the defined study area we calculate the probability ratio as well as the change in magnitude 
of the event in the observations and the models. If the models do not pass the validation tests 
we do not use the results. We synthesise the ones that pass with the observations to give an 
overarching attribution statement. Due to the fact that we have a large number of models 
available that are labelled “good” (see Table 4), we only include those in the synthesis. We 
note however that the results are not sensitive to whether the reasonable models are included 
or not. Observations and models are combined into a single result in two ways. Firstly, we 
neglect common model uncertainties beyond the model spread that is depicted by the model 
average, and compute the weighted average of models and observations: this is indicated by 
the magenta bar. As, due to common model uncertainties, model uncertainty can be larger 
than the model spread, secondly, we also show the more conservative estimate of an 
unweighted average of observations and models, indicated by the white box around the 
magenta bar in the synthesis figures. For a detailed description of the synthesis procedure 
and statistical methods see Li and Otto (2022).  



 
 
 
 
 

 

 
Fig 7: Synthesis of intensity changes (left) and probability ratios (right) when comparing the 100-year 

event with a 1.2oC cooler climate. 
 
 
 



 
 
Fig 8: Synthesis of intensity changes (left) and probability ratios (right) when comparing the 100-year 

event in today’s climate with a 0.8oC warmer climate (equivalent to 2oC of global warming). 
 
 

Fig. 7  shows the results of this assessment. Individual models show a range of different 

results, including almost no change in the likelihood and intensity of the event in the ACCESS 

models and a best estimate of the probability ratio of more than 600 in FLOR. Both are 

compatible with the highly uncertain observational analysis and we can therefore use the 

weighted mean to indicate the main result of this study. Our synthesis concludes an event 

probability ratio of 30 (2 - 140) and a corresponding change in intensity of  1°C (0.2°C - 2.2°C). 

We also note that individual model estimates of the change in event likelihood and event 

intensity are strongly correlated to each other: models showing a large increase in the intensity 

of 100-year hot events also have correspondingly large probability ratios and vice versa (see 

supplementary fig. S2).  

 

For the changes in intensity and likelihood under further warming we combine the model 

simulations for a 2°C world with those of today’s climate using the same synthesis methods 

shown in Fig. 8. The change in probability for a further 0.8°C global temperature increase is 

PR= 8 (3-12) and an additional increase in intensity of 1°C (0.3°C - 1.7°C). The simulations 

based on the HAPPI ensemble are centred at 1°C warming for the present day climate instead 

of 1.2°C thus they show changes in likelihood and intensity for an additional 1°C of global 

warming rather than 0.8°C. Nevertheless, the discrepancy between the individual models is 

smaller than for the changes up until today.  

 

In this rapid study it is not possible to fully understand the implication of representation of 

aerosols and other non-GHG forcings on the above results. We highlight, however, that the 

relatively low PR and intensity change of the ACCESS-ESM1.5 models may be related to the 

relatively large global-mean aerosol indirect effect for that model over the historical period 

compared to other models in the CMIP6 ensemble. This may be enhanced by the modest 



Equilibrium Climate Sensitivity, which results in smaller historical warming compared to other 

models (Wang et al., 2021). Apart from possible effects like this related to the model physics 

themselves, differences in future scenarios also lead to different results in future changes as 

even though all are evaluated at 2°C global mean temperature levels other forcings differ in 

the different scenarios.   

 

Furthermore, as highlighted in section 2.3, the choice of a Gaussian fit rather than a GPD 

might have led to an underestimation of the changes in a relatively rare event like this. We 

therefore conclude that our overarching results are comparably conservative and the true 

influence of human-caused climate change is towards the higher end of the estimated 

changes.  

7 Vulnerability and exposure 

Heatwaves are often termed the “silent disaster” as heat-related deaths are often 

undercounted around the world for a number of reasons. It is only weeks or months after the 

event, that statistical methods reveal the number of excess deaths, if that data is available at 

all. Despite this, the Lancet uses exposure-response functions to estimate 345,000 heat-

related deaths in people over 65 in 2019 globally, an all time high (Romanello, 2021). In 

India in 2010, a May heatwave resulted in 1,344 heat-related deaths, for a single city, 

Ahmedabad (Azhar et al., 2014). In Pakistan, a 2015 heatwave reportedly resulted in 1,300 

deaths in Karachi. The true toll across the entire region affected by the heatwave was likely 

much higher. For the 2022 heatwave, there are only anecdotal reports of heat-related deaths 

and impacts to livelihoods, agriculture, and energy. Initial estimates indicate 90 deaths in the 

region, however this number will almost certainly rise in the coming months. 

 

In this section, we explore the vulnerability and exposure factors that make people and 

human systems more or less susceptible to the impacts of the prolonged high temperatures. 

These impacts can be avoided with timely interventions and long-term measures to address 

vulnerability. Fig. 9 shows an initial visualisation of the far reaching impacts of the extreme 

heat event, and by extension the varied ways in which heightened (lessened) vulnerability 

and exposure can heighten (lessen) impacts. 

 

https://doi.org/10.1371/journal.pone.0091831


 
Fig 9: Conceptual map of impact pathways during the heatwave 

 

7.1 Demographics and vulnerable groups  

With 1.400 and 228 million inhabitants respectively, India and Pakistan are home to over 20 

percent of the world’s population20. Some of the largest and most dense global urban 

centres lie in the heatwave-affected northwestern India and Pakistan21,22. Between 1983 and 

2016, global urban extreme heat exposure increased by approximately 200 percent 

(Tuholske et al., 2021). Population growth is responsible for 80 percent of that increase in 

cities such as New Delhi, Karachi and Chennai, and 60 percent in Lahore and Mumbai 

(Tuholske et al., 2021). Three of the ten cities that experienced the largest annual increase 

in urban heat exposure between 1983-2016 are in the domain of this study: New Delhi, 

Karachi, and Lahore (Tuholske et al., 2021).  

 

Although anybody can feel the impacts of extreme heat, vulnerable groups of people are 

affected disproportionately (Figure 9). The most affected groups include farm workers, 

labour migrants, low-income households, people living in homelessness, daily wage earners 

and other outdoor workers such as construction workers, street vendors, street sweepers, 

and rickshaw drivers (Mazdiyasni et al., 2017). Furthermore, elderly and young children, 

people with chronic conditions (cardiovascular, respiratory, and cerebrovascular), people 

with pre-existing mental illness, and people with cognitive and/or physical impairments are 

increasingly at risk of extreme heat (Mazdiyasni et al., 2017; Carleton, 2017; Swain et al., 

 
20 https://www.worldometers.info/world-population/population-by-country/ 
21 https://www.theglobalstatistics.com/poverty-in-india-statistics-2021/ 
22 https://pide.org.pk/wp-content/uploads/rr-050-the-state-of-poverty-in-pakistan-pide-report-2021-68-
mb.pdf 



2019). Tourists/travellers/migrants may be at higher risk, since they might not be able to 

understand warnings in local language or know how to access cool spaces, and may be 

from colder climates and less accustomed to the heat (Hari et al., 2021).  

 

7.2 Informality in urban areas 

Approximately 10 million Karachi residents and half of New Delhi’s population live in low-

income settlements23,24. Housing in these settlements which are often considered informal 

tend to contain building structures and roof types which significantly intensify indoor 

temperatures during the day (Mahadevia et al., 2020; Mukhopadhyay et al., 2021). Unless 

these roofs are retrofitted with cool roof interventions, which can markedly reduce heat 

retention and indoor heating (Vellingiri et al., 2020), the urban poor rarely get respite from 

the extreme heat (Weitz, Mukhopadhyay and Das, 2022).This especially poses a threat to 

inhabitants who spend most of their time indoors, such as elderly, women, and people with 

physical impairments. The elderly low-income residents are, for instance, up to 4.3 times 

more likely to be exposed to hazardous heat than their rural counterparts (Weitz, 

Mukhopadhyay and Das, 2022). Moreover, tin roofs further exacerbate the urban heat island 

effect25.  

Accounting for 71 and over 80 percent of employment in Pakistan and India respectively, the 

informal economy constitutes around 35 percent of Pakistan’s GDP and decreased from 52 

to 15-20 percent of India’s between 2017 and 202126,27,28. While the largest drop of informal 

workers was in the construction and transportation sectors, where heat exposure is highest, 

half of India’s workforce is still estimated to be outdoor labourers29. India faces the largest 

impacts of heat on heavy manual labour such as agriculture and construction, with over 101 

billion hours lost per year (in comparison, global sum lost/year: 220 billion) (Parsons et al., 

2021). Under future warming, both India and Pakistan are amongst the countries projected 

to experience the largest population-weighted labour losses, together with China and 

Indonesia (ibid.).The COVID-19 pandemic has already had a devastating impact on migrant 

labour groups (Raju, Dutta and Ayeb-Karlsson, 2021) and it is these populations who are 

also exposed to extreme heat. The impacts of the heatwaves could make the pandemic 

recovery even longer for many groups of people, highlighting the need for anticipatory 

humanitarian approaches (Thalheimer et al., 2022).  

In Pakistan and India, employment status and type of livelihood activity strongly influences 

heat exposure. Worst-off are the urban poor such as daily wage earners working in open 

environments and are directly exposed to sunlight and air pollution, in conjunction with long 

working hours and inadequate mitigation practices as well as little access to health care 

facilities (Bakhsh, Rauf and Abbas, 2016; Barthwal et al, 2022; Anwar et al., 2022). For 

instance, at least four people have been found dead on the streets of Nagpur and are 

 
23 https://worldpopulationreview.com/countries/india-population 
24 https://macropakistani.com/informal-housing/ 
25 https://eos.org/articles/specifically-tailored-action-plans-combat-heat-waves-in-india 
26 https://www.ilo.org/islamabad/areasofwork/informal-economy/lang--en/index.htm 
27 https://www.ilo.org/newdelhi/areasofwork/informal-economy/lang--en/index.htm 
28 https://www.worldeconomics.com/Informal-Economy/Pakistan.aspx 
29 https://www.hindustantimes.com/india-news/49-of-indian-workers-are-employed-outdoors-in-
scorching-heat-101651514183004.html 

https://link.springer.com/content/pdf/10.1007/s11356-022-18886-9.pdf


labelled suspected heat stroke-related fatalities30. The urban poor experience highest heat 

exposure risks due to the urban heat island effect which can exacerbate heat by up to 12°C 

locally (Razzak et al., 2022). Peri-urban residents must often commute long distances by 

foot, bike or public transportation, reducing their ability to take mitigating measures against 

extreme heat (Bakhsh, Rauf and Abbas, 2016). 

7.3 Heat Action Planning, Preparedness, and Response 

Extreme heat impacts the body's abilities to regulate temperature, and in the worst case 

scenario this can lead to fatal outcomes31. An influx of potential heat-related patients can 

overwhelm public health  systems, while proper planning and response for increased 

patients can reduce impacts. South Asia has implemented an arsenal of early warning 

systems and early action programmes from local to regional scales to reduce impacts32. 

Both India and Pakistan are making significant and rapid strides to combat extreme heat in 

particular, especially in recent decades. The South Asia Heat Health Information Network 

(SAHHIN) was developed in 2020 to share lessons and increase capacity to deal with 

extreme heat across South Asia. It has also been shown in the past that awareness raising 

programs in India are effective impact minimizers (Smith and Das, 2012).  

 

7.3.1 Heat Action Planning, preparedness, and response in India 

Having suffered a catastrophic heatwave in 2010, which took more than 800 lives, 

Ahmedabad, India was the first South Asian city to implement a HAP and the city is now 

estimated to avoid approximately 1,190 heat-related deaths annually (Hess et al., 2018). 

Since 2013, over 120 Indian cities and states have developed Heat Action Plans (HAP) that 

build public awareness and capacity among health professionals, safety alerts for residents, 

foster inter-agency coordination, and enable adaptive measures for vulnerable groups33. 

Common adaptive measures across HAPs include adopting cool roof technology, increasing 

green coverage in urban settings by enforcing tree planting by new road projects, 

assembling roof structures at markets, and installing drinking water stations along highways 
33.  

To mobilise for the 2022 heat season, in March, the National Disaster Management Authority 

(NDMA) held a national workshop on heat preparedness, mitigation and management33. 

New for this season the India Meteorological Department’s (IMD) moved from a simple to an 

impact-based early warning system with a goal of providing residents in affected areas with 

accessible and actionable information to enable increased heat risk understanding and 

coping capacity33. Coupled with IMD’s Mausam app, which was launched in 2020 to aid the 

timely dissemination of information to the public, this enables increased awareness of 

weather and warnings33. 

Aimed at mitigating the increasing temperatures’ toll on public health and building consensus 

around its management, India’s Ministry of Health and Public Welfare (with support from 

other government departments and non-governmental actors) developed the National Action 

 
30 https://indianexpress.com/article/cities/pune/maharashtra-heatwave-citizens-caution-experts-
7894216/ 
31 https://www.who.int/india/heat-waves 
32 https://cdkn.org/sites/default/files/2022-04/RCCC%20Guidance%20Note-EWEA.pdf 
33 https://www.nrdc.org/sites/default/files/india-heat-resilience-20220406.pdf 



Plan on Heat Related Illnesses34. Launched in 2021, it contains guidelines for the 

government, health care facilities and policymakers on managing and reporting heat-related 

illnesses. Stocktaking basic equipment and medicine and ensuring sufficient staffing are 

some of the recommended actions when faced with extreme heat. During the 2022 

heatwave, the Ministry of Health and Indian Institute of Public Health Gandhinagar (IIPHG) 

advised people to wear lightweight clothing of natural fibres, avoid exposing one’s head to 

direct sunlight and seek care if they recognize any signs of heat-related illness35. In bracing 

for a spike in patients, hospitals across India set up special wards for heat-related illnesses, 

rolled out capacity-building training and sensitisation on heat risk and symptoms for medical 

staff, and were instructed to ensure uninterrupted electricity supply to guarantee the 

functioning of cooling devices36 Cooling centres and rooms were established in primary 

health centres, hospitals, temples, malls and other public buildings to provide visitors with 

drinking water, health care and respite from the heat, while fans and cooling structures were 

installed in schools37.  

7.3.2 Heat Action Planning, preparedness, and response in Pakistan 

In Pakistan, Start Network38 has a national disaster risk financing programme that funds 

early action in anticipation of heatwaves. Such activities include training community leaders 

in disaster preparedness and first aid, opening shelters in schools and other communal 

spaces, spreading public awareness on heatstroke prevention and identification of 

symptoms, establishing helplines, and setting up health emergency camps that provide cold 

drinking water and medicines38. Cities covered by the programme include Karachi, Larkana, 

Multan, Sibi, Nawabshah and Jacobabad; the latter having experienced 49 degrees on 29 

April, the region’s maximum temperature that day. Moreover, following the devastating 2015 

heatwave that led to over 2.500 deaths in India and 1.200 fatalities in Pakistan, as well as 

more than 65.000 hospitalised Karachi residents due to heatstroke39, Karachi and other 

urban areas across Pakistan have developed HAPs40. Actions taken in Karachi once a 

heatwave warning has been issued include establishing cooling centres in mosques, malls 

and other public buildings; increasing staffing at healthcare centres to accomodate a rise in 

patient influx; and redistributing more ambulances to densely populated areas40.  

Adapting to heatwaves - such as increasing one’s water consumption, staying in the shade 

or bathing more frequently - is the most significant determinant to reducing heat-related 

mortality in urban Pakistan (Bakhsh, Rauf and Zulfiqar, 2018). A Start Network38 evaluation 

on early action in response to heatwaves in Sibi, Pakistan in 2021 showed that it led people 

to practise such positive behaviours more often, except for those whom it would negatively 

impact livelihoods, such as rickshaw drivers or construction workers. The dilemma to choose 

between safeguarding one’s health and sustaining one’s livelihood is characteristic of the 

most at-risk populations’ exceptional vulnerability.  

 
34 https://ncdc.gov.in/WriteReadData/linkimages/NationActionplanonHeatRelatedIllnesses.pdf 
35 https://www.onmanorama.com/news/india/2022/04/28/heatwave-in-india-imd-update.html 
36 Independent, 2022; Times Now News, 2022; Indian Express, 2022 
37 https://thediplomat.com/2022/05/indians-grapple-with-deadly-heatwaves/ 
38 https://startnetwork.org/disaster-risk-financing-pakistan 
39 https://www.ibtimes.com/pakistan-heat-wave-2015-death-toll-exceeds-1200-karachi-struggles-
continued-extreme-1986866 
40 https://ghhin.org/wp-content/uploads/HeatwaveManagementPlan.pdf 

https://www.independent.co.uk/climate-change/news/india-heatwave-2022-delhi-latest-b2068112.html?page=2
https://www.timesnownews.com/india/health-facility-preparedness-must-be-reviewed-as-india-reels-under-intense-heatwave-centres-advisory-to-states-article-91237781
https://indianexpress.com/article/cities/pune/maharashtra-heatwave-citizens-caution-experts-7894216/


In October 2021, as Pakistan updated its Nationally Determined Contributions (NDC), the 

government announced it is developing a Cooling Action Plan to be adopted by 202641. The 

plan will identify key cooling needs and outline sustainable actions for addressing those 

needs, both current and prospective. In response to the 2022 heatwave, public health 

authorities in Pakistan instructed health units to open “heatstroke centres'' and communicate 

this to the public, while reminding people to avoid direct sunlight and increase their water 

consumption42,43. In Pakistan, although most rigorous action seems to have been taken in 

May44 ,numerous trainings were rolled in April. Between 18 and 29 April, the Provincial 

Disaster Management Authority (PDMA) Sindh and Pakistan Red Crescent Society (PRCS)  

jointly offered heat emergency training to traffic police and line department officials as well 

as representatives of civil society organisations45.   

7.4 Agriculture 

The agricultural sector is one of the most important industries for India’s economy and a 

livelihood for a majority of the population, with 60 percent of the population working in this 

sector9. In Pakistan, the agricultural sector accounts for around 40 percent of the labour 

force9. This extreme heatwave hit at a critical time, right at the final period of the growing 

season for winter crops such as wheat and barley, causing extensive impacts on the 

agricultural sector; and affecting summer crops such as pulses, coarse cereals, oilseeds, 

vegetables and fruits. Advisories were sent to farmers to ensure frequent irrigation for the 

crops46. 

  

Agrarian distress is a common problem in many parts of South Asia and this extreme heat 

further has negative impacts on agricultural workers. High temperatures decrease labour 

productivity (Parsons et al., 2021), farm workers and farmers are often required to change or 

diminish working hours due to the unbearable heat during the daytime, and the heat 

decreases crop production, causing direct economic loss to farmers. These factors will have 

a very negative impact on wage earners working on farms due to loss of income. The 

Northern states of Punjab and Haryana of India account for 25 percent of India’s total wheat 

production47, Farmers in Haryana, Uttar Pradesh, and Punjab have lost an estimated 10-35 

percent of crop yields due to the heatwave48. This has affected local market prices, which 

have risen up to 15 percent in some regions49. In Pakistan, exportable mango varieties have 

seen a 50 percent loss and 30 percent in local varieties, due to the extreme heat, which was 

followed by a pest attack43. Acre yields decreased from 40 to 28 maunds (roughly 1,500kg 

reduced to 1,000kg) in March (ibid.).  

 

 
41https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Pakistan%20First/Pakistan%20Updat
ed%20NDC%202021.pdf 
42 https://www.arabnews.pk/node/2083176/pakistan 
43 https://www.dawn.com/news/1689141/no-50-shades-for-karachis-citizens-under-the-scorching-sun 
44 https://www.geo.tv/latest/416495-heatwave-alert-sindh-declares-emergency-to-deal-with-extremely-
hot-weather 
45 https://www.geo.tv/latest/416495-heatwave-alert-sindh-declares-emergency-to-deal-with-extremely-
hot-weather 
46 https://mausam.imd.gov.in/imd_latest/contents/agromet/advisory/state_past_en.php 
47 https://apps.fas.usda.gov/psdonline/circulars/production.pdf 
48 https://economictimes.indiatimes.com/news/india/severe-heatwave-across-india-roasts-crop-
yield/articleshow/91241168.cms 
49 https://www.reuters.com/world/india/after-five-record-crops-heat-wave-threatens-indias-wheat-
output-export-plans-2022-05-02/ 



India is currently the second-largest wheat producer globally, yet production is mainly sold 

on domestic markets. This year, India was planning to boost its wheat exports to account for 

the wheat crisis resulting from the ongoing Russian invasion of Ukraine50. On top of that, the 

wheat crisis has been worsened due to increasingly high fertiliser prices this year51. Global 

food prices have reached their highest level ever recorded in March 2022, observing a 40 

percent increase since the beginning of the year52. Yet, with extreme temperatures affecting 

crop productions and increasing local prices, the Indian government decided to ban most 

wheat exports to protect India’s internal food market - further affecting the global wheat 

market and food-dependent countries53. 

 

The full extent of the impacts on the agricultural sector in India and Pakistan are yet to be 

observed over the following months. Functional electricity and water systems are important 

during periods of extreme heat. At present, there is an urgent need for research, public 

policies and investments to focus on adaptation strategies to minimise the future impacts of 

extreme heat on agriculture. 

 

7.5 Compounding risks  

Preceding sections outline a number of ways in which this extreme heat event intersects with 

public health, agriculture, socio-economic factors and urban planning. In addition to these 

intersections there are additional compounding risks such as cascading hazard types and 

energy availability.  

  

7.5.1 Floods and wildfires 

Heatwaves are known to create cascading hazards, leading to secondary events of significant 

impact (Pescaroli et al., 2015; Tilloy et al., 2019; Vogel et al., 2020). For example, increased 

temperatures and evapotranspiration from heatwaves can result in both water shortages and 

floods from meltwater. In northern Pakistan and India, rapidly melting glaciers are putting 

thousands at risk of glacial lake outburst floods (GLOFs) and landslides as well as to 

decreased water supplies. GLOF risks were highlighted by the Pakistani government in their 

heatwave response54 and a large one occurred on the 7th of May, wiping out a bridge, houses 

and inundating farmland in the Hunza valley55. Heatwaves also increase the risk of forest-fires 

(Jain et al., 2021). On April 27th, the Forest Survey of India reported 300 active large forest 

fires, a third of which were in Uttarakhand province56. In Delhi, a massive landfill caught fire 

for at least 9 days57. Across Pakistan, multiple farm and village fires have been reported 

 
50 https://www.aljazeera.com/economy/2022/3/29/war-creates-an-opportunity-for-indian-wheat-
growers 
51 https://www.theatlantic.com/science/archive/2022/05/india-pakistan-heatwave-wheat-economic-
costs/629753/ 
52 https://www.fao.org/worldfoodsituation/foodpricesindex/en/ 
53 https://www.bbc.co.uk/news/business-61461093 
54 https://cms.ndma.gov.pk/news/rise-in-temperature-glof-alert-for-gbandkp-issued-departments-to-
take-precautionary-measures-ndma 
55 https://floodlist.com/asia/pakistan-glof-floods-gilgit-baltistan-may-2022 
56 https://earthobservatory.nasa.gov/images/149766/early-season-heat-waves-strike-india 
57 https://indianexpress.com/article/cities/delhi/9-days-on-delhis-bhalswa-landfill-still-on-fire-dfs-says-
longest-operation-yet-7901842/ 

http://fi-re.in/smsalerts/dashboard.php


throughout April, resulting in loss of lives and properties58,59. In turn, these fires have a 

significant impact on air quality, which increases morbidity and mortality of extreme heat 

events. April was reported as the worst month for air quality in Delhi since 2015 - the city 

recorded 29 days of “poor air quality” (200-300 Air Quality Index, AQI)60. Throughout March 

and April, Lahore consistently measured AQI corresponding to levels “unhealthy for sensitive 

groups” (151-200) and “unhealthy” (201-300)61. 

 

7.5.2 Energy 

About 70 percent of India’s electricity generation comes from coal62, with about 60 percent of 

energy provision from coal, oil and natural gas in Pakistan63. The ongoing heatwave has 

already increased the demand for coal imports in India and shortages are resulting in rolling 

blackouts64. At least 16 out of 28 states in India have experienced power outages between 

two and ten hours65. This makes it even more difficult for people to cope, as even those who 

have fans or air conditioning may not be able to use them, as well as affecting industry, and 

agriculture which relies on electricity to irrigate crops for the upcoming paddy growing 

season66.  

 

7.6 Vulnerability and exposure conclusion  

The full health and economic fallout, and cascading effects from the current heat wave will 

likely take months to determine, including the number of excess deaths, hospital visits, lost 

wages, missed school days, and diminished working hours. The urban poor in India and 

Pakistan are amongst the most exposed and vulnerable to extreme heat, and are left using 

coping mechanisms to withstand the extreme heat and earn a daily wage. Rising temperatures 

from more intense and frequent heat waves will render coping mechanisms inadequate as 

some regions meet and exceed limits to human survivability (Mora et al., 2017). While some 

losses will inevitably occur due to the extreme heat, it is misleading to  assume that the impacts 

are inevitable (Raju, Otto and Boyd, 2022). This emphasises the need to record losses and 

damages occurring due to climate change related disasters (Boyd et al, 2021). Adaptation to 

extreme heat has been shown to be effective in some cases (Hess et al., 2018). Heat Action 

Plans that include early warning and early action, awareness raising and behaviour changing 

messaging, and supportive public services can reduce mortality, and India’s rollout of these 

has been remarkable, now covering 130 cities and towns. There are still large research gaps 

on adaptation to heat across India and Pakistan that will require study to build a stronger 

evidence base for action67.  Heatwaves are disasters, requiring society to tackle issues of 

people’s vulnerabilities which are underlying causes of disasters. Better urban and health 

planning, disaster insurances and livelihood protection mechanisms, investment in green 

 
58 https://www.eco-business.com/news/south-and-central-asia-reel-under-early-heatwave/ 
59 https://www.pdma.gos.pk/new/Docs/PR_19-04-2022.pdf 
60 https://www.hindustantimes.com/cities/delhi-news/delhiites-breathe-with-difficulty-dust-poor-air-
quality-pollution-to-blame-101651817595366.html 
61 Environment Protection Department, 2022 
62 https://www.iea.org/reports/india-energy-outlook-2021/energy-in-india-today 
63 https://www.iea.org/countries/pakistan 
64 https://www.argusmedia.com/en/news/2329420-india-raises-ntpcs-coal-import-target 
65 https://timesofindia.indiatimes.com/business/india-business/heat-wave-is-making-indias-power-
crisis-worse/articleshow/91340064.cms 
66 https://time.com/6173769/india-heatwave-climate-change-coal/ 
67 https://ghhin.org/wp-content/uploads/HeatwaveManagementPlan.pdf 
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spaces, energy grid strengthening, improved water infrastructure and pollution controls could 

all contribute to ensuring that fewer people suffer as temperatures rise. 

 

 

Data availability 

Almost all data are available via the Climate Explorer. 

Full results table 

Table S1: Probability ratio and change in intensity when compared with a 1.2oC cooler climate, from all 
models. 

Model / Observations Seasonal cycle Spatial pattern Sigma Conclusion 

CPC (1979-2022)   1.14 (0.849 ... 1.40)  

IMD (1951-2022)- India only   1.05 (0.878 ... 1.19)  

ExampleMOD1 historical-

rcp85 (10) good good 0.200 (0.100 ... 0.300) good 

ExampleMOD2 historical-

ssp245 (3) 

reasonable, the 

warmest month is 

July instead of 

observed August good 0.200 (0.100 ... 0.300) good 

ECEARTHr12-

COSMOcrCLIM rcp85 (1) good good 1.41 (1.06 ... 1.65) good 

MPIr1-COSMOcrCLIM 

rcp85 (1) good good 1.02 (0.710 ... 1.26) good 

NORESMr1-

COSMOcrCLIM rcp85 (1) good good 1.31 (1.06 ... 1.47) good 

MIROCr1-REGCM rcp85 

(1) reasonable, good 1.09 (0.810 ... 1.30) reasonable 

MPIMRr1-REGCM rcp85 

(1) reasonable, good 1.22 (0.890 ... 1.47) reasonable 

NORESMr1-REGCM rcp85 

(1) reasonable, good 1.21 (0.870 ... 1.47) reasonable 

HADGEMr1-REMO rcp85 

(1) 
reasonable, 

positive bias 
reasonable, but 3-

6°C positive bias 0.930 (0.750 ... 1.05) reasonable 

MPIr1-REMO rcp85 (1) 
reasonable, 

positive bias 
reasonable, but 3-

6°C positive bias 1.35 (1.07 ... 1.52) reasonable 

NORESMr1-REMO rcp85 

(1) 
reasonable, 

positive bias 
reasonable, but 3-

6°C positive bias 1.27 (1.01 ... 1.49) reasonable 

FLOR (5) good good 1.25 (1.13 ... 1.37) good 



HAPPI-CCCMA happi2.0 

(10) good good 1.06 (1.02 ... 1.11) good 

HAPPI-ETH happi2.0 (10) good good 1.24 (1.19 ... 1.29) good 

HAPPI-MPI-1 happi2.0 (10) good good 1.65 (1.58 ... 1.73) bad 

HAPPI-NCC happi2.0 (10) good good 1.17 (1.13 ... 1.22) good 

HAPPI-MIROC happi2.0 

(10) good good 1.21 (1.15 ... 1.25) good 

CMIP6_ACCESS1-CM2 

Historical+SSP245 (1) reasonable reasonable 0.940 (0.756 ... 1.06) reasonable 

CMIP6_ACCESS ESM1-5 

Historical+SSP245 (1) good reasonable 1.06 (0.849 ... 1.22) good 

CMIP6_BCC-CSM2-MR 

Historical+SSP245 (1) good reasonable 0.949 (0.761 ... 1.08) reasonable 

CMIP6_CanESM5 

Historical+SSP245 (1) bad reasonable 1.10 (0.849 ... 1.29) bad (monsoon dip absent) 

CMIP6_INM-CM4-8 

Historical+SSP245 (1) good good 1.11 (0.809 ... 1.32) good 

CMIP6_INM-CM5-0 

Historical+SSP245 (1) good good 0.882 (0.669 ... 1.05) reasonable 

CMIP6_MIROC6 

Historical+SSP245 (1) good bad 1.74 (1.32 ... 2.02) bad 

ACCESS-CM2 

Historical+SSP585 (4) reasonable good 1.03 (0.982 ... 1.09) reasonable 

ACCESS-ESM1-5 " (40) good good 1.18 (1.16 ... 1.20) good 

AWI-CM-1-1-MR " (1) reasonable reasonable 1.46 (1.31 ... 1.63) 

bad; excluded since 

sufficient models available 

and no 'good' performance 

anywhere 

BCC-CSM2-MR " (1) good good 1.18 (1.06 ... 1.32) good 

CAMS-CSM1-0 " (1) reasonable good 0.996 (0.898 ... 1.11) reasonable 

CMCC-CM2-SR5 " (1) good good 0.812 (0.732 ... 0.904) reasonable 

CMCC-ESM2 " (1) good good 1.02 (0.919 ... 1.14) good 

CNRM-CM6-1 " (1) good good 1.54 (1.39 ... 1.72) reasonable 

CNRM-CM6-1-HR " (1) good good 1.30 (1.17 ... 1.45) reasonable 

CNRM-ESM2-1 " (1) good good 1.40 (1.27 ... 1.57) reasonable 

CanESM5 " (50) bad good 1.21 (1.19 ... 1.23) 
bad; clear upward trend in 

rolling std (prior to 2022) 

EC-Earth3 " (6) good good 1.14 (1.09 ... 1.19) good 

EC-Earth3-CC " (1) good good 1.16 (1.04 ... 1.30) good 

EC-Earth3-Veg " (7) good good 1.12 (1.08 ... 1.17) good 

EC-Earth3-Veg-LR " (3) good good 1.13 (1.06 ... 1.20) good 



FGOALS-g3 " (3) bad reasonable 1.15 (1.09 ... 1.23) 
bad; clear upward trend in 

rolling std (prior to 2022) 

GFDL-CM4 " (1) reasonable reasonable 1.29 (1.17 ... 1.45) reasonable 

GFDL-ESM4 " (1) reasonable reasonable 1.14 (1.03 ... 1.28) reasonable 

GISS-E2-1-G " (1) bad reasonable 1.27 (1.14 ... 1.41) bad 

HadGEM3-GC31-LL " (4) good reasonable 1.07 (1.02 ... 1.14) reasonable 

HadGEM3-GC31-MM " (4) good reasonable 1.13 (1.07 ... 1.20) reasonable 

INM-CM4-8 " (1) good good 0.949 (0.851 ... 1.06) good 

INM-CM5-0 " (1) good good 0.907 (0.817 ... 1.02) good 

IPSL-CM6A-LR " (7) good good 1.16 (1.12 ... 1.21) 
exclude (to avoid overlap 

with larger ensemble) 

KACE-1-0-G " (3) reasonable reasonable 1.30 (1.22 ... 1.38) 
bad; clear upward trend in 

rolling std (prior to 2022) 

MIROC-ES2L " (10) good reasonable 1.33 (1.29 ... 1.38) reasonable 

MIROC6 " (50) good bad 1.77 (1.75 ... 1.80) bad 

MPI-ESM1-2-HR " (2) reasonable good 1.24 (1.16 ... 1.34) reasonable 

MPI-ESM1-2-LR " (30) reasonable good 1.22 (1.19 ... 1.24) reasonable 

MRI-ESM2-0 " (6) good good 1.51 (1.44 ... 1.58) bad 

NESM3 " (1) reasonable bad 1.08 (0.971 ... 1.20) bad 

NorESM2-MM " (1) reasonable good 0.793 (0.712 ... 0.883) reasonable 

TaiESM1 " (1) reasonable good 1.05 (0.942 ... 1.17) reasonable 

UKESM1-0-LL " (5) good good 1.04 (0.993 ... 1.09) good 

IPSL-CM6A-LR (32) good reasonable 1.15 (1.09 ... 1.19) good 

CNRM-CM6-1 HighResMIP 

(1) good good 1.61 (1.32 ... 1.82) bad 

CNRM-CM6-1-HR 

HighResMIP (1) good good 1.29 (1.04 ... 1.46) good 

EC-Earth3P HighResMIP 

(1) good good 1.45 (1.17 ... 1.64) reasonable 

EC-Earth3P-HR 

HighResMIP (1) good good 1.47 (1.01 ... 1.78) reasonable 

HadGEM3-GC31-HM 

HighResMIP (1) good good 1.26 (1.00 ... 1.44) good 

HadGEM3-GC31-LM 

HighResMIP (1) good good 1.38 (1.12 ... 1.59) reasonable 

HadGEM3-GC31-MM 

HighResMIP (1) good good 1.21 (0.918 ... 1.42) good 

MPI-ESM1-2-HR 

HighResMIP (1) good good 1.41 (1.05 ... 1.69) reasonable 

MPI-ESM1-2-XR 

HighResMIP (1) good good 1.57 (1.25 ... 1.83) 
bad(slight upward trend in 

rolling s.d. before 2022) 



 

%only for large ensembles if not totally shown in sect 4. 
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Supplementary Figures 

 

 
Fig S1: (a) Trend in May-June mean daily maximum temperature based on IMD record for the period 

1979-2013. Stippling shows trends are significant at 10% significance level (b) same as (a), for 

March-April mean daily maximum temperature.  
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Fig. S2: This scatter plot compares the best estimates of the change in intensity of a 100-year hot 

event (x-axis) for each observational product and model (models classified as “good” or “reasonable” 

in the validation tests were included here), against the best estimate of the corresponding probability 

ratio also found for each model/observational product (see Section 6 for uncertainty estimates 

associated with each of these best-estimate results). These results only relate to the comparison 

between the present-day climate and a 1.2°C cooler climate. The correlation coefficient is associated 

with an exponential fit applied only to the model-based results. 
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