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Abstract. Disastrous bushfires during the last months of 2019 and January 2020 affected Australia, raising the question to
what extent the risk of these fires was exacerbated by anthropogenic climate change. To answer the question for southeast-
ern Australia, where fires were particularly severe, affecting people and ecosystems, we use a physically-based index of fire
weather, the Fire Weather Index, long-term observations of heat and drought, and eleven large ensembles of state-of-the-art
climate models. In agreement with previous analyses we find that heat extremes have become more likely by at least a factor
two due to the long-term warming trend. However, current climate models overestimate variability and tend to underestimate
the long-term trend in these extremes, so the true change in the likelihood of extreme heat could be larger. We do not find an at-
tributable trend in either extreme annual drought or the driest month of the fire season September—February. The observations,
however, show a weak drying trend in the annual mean. Finally, we find large trends in the Fire Weather Index in the ERAS
reanalysis, and a smaller but significant increase by at least 30% in the models. The trend is mainly driven by the increase
of temperature extremes and hence also likely underestimated. For the 2019/20 season more than half of the July-December
drought was driven by record excursions of the Indian Ocean dipole and Southern Annular Mode. These factors are included in
the analysis. The study reveals the complexity of the 2019/20 bushfire event, with some, but not all drivers showing an imprint

of anthropogenic climate change.
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1 Introduction

2019 was the warmest and driest year in Australia since homogeneous temperature and rainfall observations began (in 1910 and
1900), following two already dry years in large parts of the country. These conditions as well as a strong Indian Ocean Dipole
from the middle of the year onwards and a large-amplitude excursion of the Southern Annular Mode led to weather conditions
conducive to bushfires across the continent and so the annual bushfires were more widespread and intense and started earlier
in the season than usual (Bureau of Meteorology, Annual Climate Statement 2019).

The high temperatures and prolonged dry conditions have resulted in unprecedented bushfire activity across the states of New
South Wales (NSW), Victoria (VIC), Western Australia (WA), Queensland (QLD), South Australia (SA), and in the Australian
Capital Territory (ACT). In addition to the unprecedented nature of this event, its impacts to date have been disastrous. As of
the writing of this paper, at least 34 people have died as a direct result of the bushfires and the resulting smoke caused hazardous
air quality (over twenty times the levels considered safe by the Australian government in Canberra) adversely affected millions
of residents in cities in these regions. An estimated 5,900 residential and public structures have been destroyed. Wildlife death
is estimated to have surpassed 1.5 billion losses, along with tens of thousands of livestock (Reliefweb Australia: bushfires,
2020). The bushfires are having an economic impact (including millions in insurance claims), as well an immediate and long
term health impact to the people exposed to smoke and dealing with the psychological impacts of the fires.

The pace at which the bushfires have spread and the subsequent heavy and persistent smoke made it difficult for emergency
services to access and evacuate some communities, at times forcing residents to flee to beaches and other water bodies to avoid
impact and await rescue. Power, fuel and food supplies have been severely interrupted to some communities and road closures
have been common. This has resulted in some communities being isolated, or only accessible by air or sea (when smoke
conditions allow), Reliefweb Australia: bushfires, 2020. The prevailing drought conditions over all affected states during 2019
and the two years before, are expected to negatively impact agricultural and horticultural sectors.

It is well-established that wildfire smoke exposure is associated with respiratory morbidity (Reid et al., 2016). Additionally,
fine particulate matter in smoke may act as a triggering factor for acute coronary events (such as heart attack-related deaths) as
found for previous fires in southeast Australia (Haikerwal et al., 2015). As noted by Johnston and Bowman (2014), increased
bushfire-related risks in a warming climate have significant implications for the health sector, including given measurable
increases in illness, hospital admissions, and deaths associated with severe smoke events.

Based on the recovery of areas following previous major fires, such as Black Saturday in Victoria in 2009, these impacts are
likely to affect people, ecosystems and the region for a substantial period to come.

The satellite image in Fig. 1 shows the severity of the fires since July, with two regions with particularly severe events in the
South West and South East. Due to the fact that in the South East many population centres were affected and the region was
also strongly affected by drought we focus our analysis on this region.

Wildfires in general are one of the most complex weather-related extreme events (Sanderson and Fisher, 2020) with their
occurrence depending on many factors including the weather conditions conducive to fire at the time of the event and also on the

availability of fuel, which in turn depends on rainfall, temperature and humidity in the weeks, months and sometimes even years


http://media.bom.gov.au/releases/739/annual-climate-statement-2019-periods-of-extreme-heat-in-2019-bookend-australias-warmest-and-driest-year-on-record/
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Figure 1. Modis active fire data (Collection 6, near real time and standard products) showing the severity of bushfires from 1 July 2019 to

10 January 2020 with the most severe fires being depicted in red. The image also shows the forested areas of Eastern Australia in blue. The

polygon shows the area analysed in this article.

preceding the actual fire event. In addition ignition sources and type of vegetation as factors largely outside the meteorology
play an important role. In this analysis we only consider the influence of weather and climate on the fire risk, excluding ignition
sources. There is not one definition of what fire weather consists of as the relative importance of different factors depends on the
climatology of the region. For instance, fires in grasslands in semi-arid regions behave very differently than those in temperate
forests. There are a few key meteorological variables that are important: temperature, precipitation, humidity and wind (speed
as well as direction). Fire danger indices are derived from these variables either using physical models or empirical relationships
between these variables and fire occurrence, including observed factors such as the rate of spread of fires and measurements
of fuel moisture content with different sets of weather conditions. In Australia the Forest Fire Danger Index (FFDI McArthur,
1966, 1967; Noble et al., 1980) is commonly used for indicating dangerous weather conditions for bushfires, including for
issuing operational forecasts during the 2019/20 summer. The index is based on temperature, humidity and wind speed on a

given day as well as a drought-factor which is based on antecedent temperature and rainfall. Southeast Australia experiences
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a temperate climate and on the eastern seaboard hot summers are interspersed with intense rainfall events, often linked with
‘east-coast lows’ (Pepler et al., 2014). Bushfire activity historically commences in the Austral spring (September-November)
in the north and summer (December-February) in the south Clarke et al. (2011). Bushfire weather risk, as characterised by the
FFDI, has increased across much of Australia in recent decades (Clarke et al., 2013; Dowdy, 2018; Harris and Lucas, 2019).
Similar, increasing trends in fire weather conditions over southern Australia have been identified in other studies, both for FFDI
(e.g., Dowdy, 2018) and for indices representing pyroconvective processes (Dowdy and Pepler, 2018). These observed trends
over southeast Australia are broadly consistent with the projected impacts of climate change (e.g., Clarke et al., 2011; Dowdy
et al., 2019). For individual fire events studies have shown that it can be difficult to separate the influence of anthropogenic
climate change from that of natural variability (e.g., Hope et al., 2019; Lewis et al., 2019). An alternative index is the physically
based Canadian Fire Weather Index (FWI) that also includes the influence of wind on the fuel availability (Dowdy, 2018). The
latter is achieved by modelling fuel moisture on three different depths including the influence of humidity and wind speed on
the upper fuel layer (Krikken et al., 2019). While the FWI was originally developed specifically for the Canadian forests, the
physical basis of the models allows it to be used for many different climatic regions of the world (e.g., Camia and Amatulli,
2009; Dimitrakopoulos et al., 2011), and has been shown to provide a good indication of the occurrence of previous extreme fire
events in the South Eastern Australian climate (Dowdy et al., 2009). A study on the emergence of fire weather anthropogenic
signal from noise indicated that this is expected around 2040 for Southern Australia (Abatzoglou et al., 2019) using the FWI.
In this study we also consider the Monthly Severity Rating (MSR), which is derived from the FWI and reflects better how
difficult a fire is to suppress (Shabbar et al., 2011).

As the fire risk indices depend on heat and drought, and these were also extreme in 2019/2020, we also consider these factors
separately. Previous attribution studies on Australian extreme heat at regional scales has generally indicated an influence from
anthropogenic climate change. The ‘angry summer’ of 2012/2013—which until 2018/2019 was the hottest summer on record—
was found to be at least 5 times more likely to occur due to human influence (Lewis and Karoly, 2013). The frequency and
intensity of heatwaves during this summer were also found to increase (Perkins et al., 2014). Other attribution assessments
that found an attributable influence on extreme Australian heat include the May 2014 heatwave (Perkins and Gibson, 2015),
the record October heat in 2015 (Hope et al., 2016), and extreme Brisbane heat during November 2014 (King et al., 2015).
However, at small spatial scales such as in-situ sites, human influence on extreme heat is less clear (Black et al., 2015). It is
worth noting that Lewis et al. (2019) found that the temperature component of the extreme 2018 Queensland fire weather had
an anthropogenic influence, while no clear influence was detected on the February 2017 extreme fire weather over Eastern
Australia (Hope et al., 2019). We are not aware of any attribution studies on Australian drought.

Thus, while it is clear that climate change does play an important role in heat and fire weather risk overall, assessing the
magnitude of this risk and the interplay with local factors has been difficult. Nevertheless it is crucial to prioritise adaptation
and resilience measures to reduce the potential impacts of rising risks.

We perform the analysis of possible connections between the fire weather risk and anthropogenic climate change in three
steps. First, we assess the trends in extreme temperature and conduct an attribution study using a seven-day moving average

of annual maximum temperatures corresponding to the time scale chosen for the Fire Weather Index. Second, we undertake
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the same analysis but for drought defined as purely lack of rainfall in two time windows, the annual precipitation as well as
the driest month in the fire season, with the latter again roughly corresponding to the input time scale of the FWI. Third, we
conduct an attribution study on the Fire Weather Index (FWI) and the Monthly Severity Rating (MSR). These three attribution
studies follow the same protocol used in previous assessments (Heat waves: Kew et al. (2019); low precipitation: Otto et al.
(2018b); Fire Weather Index: Krikken et al. (2019). We continue the analysis with a discussion of other large scale drivers, such
as El Nifio Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) or the Southern Annular Mode (SAM). Finally we

consider non-climate factors (such as exposure and vulnerability) that have contributed to the extreme fire season of 2019/20.

2 Data and methods
2.1 Event definition

In this article we trace the connection between anthropogenic climate change and the likelihood and intensity of dangerous
bushfire conditions as parametrised by the FWI in the region with the most intense fires in 2019/20 in southeastern Australia.
We defined this region as the land area in the polygon 29 °S, 155 °E; 29 °S, 150 °E; 40 °S, 144 °E and 40 °S, 155 °E (as
shown in Fig. 1). This corresponds with the area between the Great Dividing Range and the coast.

To capture the variations in the start of the fire season in the region described above we take for most quantities first the
annual maximum per grid point over the fire season September—February and next the spatial average over the region defined
above. This way the events do not need to be simultaneous at separate grid points within the region. We therefore investigate
the question how anthropogenic climate change influences the chances of an intense bushfire season, rather than focusing on a
single episode of intense bushfires.

The FWI Index provides a reasonable proxy for the burnt area in the extended summer months, with the strongest relationship
observed from November to February. Fig. 2 shows both the Spearman rank based correlation and the Pearson correlation when
a log-transform of the burnt area was taken. The 95% confidence intervals are also shown. Given the similarity in the confidence
intervals, the log-linear relationship appears to explain equal variability to that of the ranks.

In most years only very small areas are burnt, but the observational record also includes events with extremely large areas.
Given this, we checked if the burned area observations were heavy-tailed (Pasquale, 2013). We found that monthly burned
area was not Pareto-distributed and instead is reasonably approximated using a log-normal distribution. This supports using
the log-transformation and extrapolating this relationship to the 2019/20 fire season. Temporal detrending of the observations

did not alter these conclusions.
2.2 Observational data

The observational data used in this study are described in Sect. 3.3, 4.2 and 5.3 for heat, drought and the fire weather index

respectively. For the Global Mean Surface temperature (GMST) we use GISTEMP surface temperature (Hansen et al., 2010).
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Figure 2. Left: correlation and 95% two-sided interval based on the bootstrap of the logarithm of area burnt (MODIS, Collection 6) in the
index area as a function of the 7-day maximum Fire Weather Index for each month of the year. The horizontal line denotes the one-sided
95% confidence interval around zero. Right: scatterplot of the values for the fire season, September—February. The correlations are based on

the years 1997 to 2018.

2.3 Model and experiment descriptions

Attributing observed trends to anthropogenic climate change can only be done with physical climate models as they allow
isolating different drivers. For this purpose we use a large set of ocean-atmosphere coupled climate models. A selection of
large ensembles of CMIP5 models has been used: CanESM2, CESM1-CAMS5, CSIRO Mk3.6.0, EC-Earth 2.3, GFDL CM3,
GFDL ESM2M and MPI ESM. In addition, the HadGem3-A N216 attribution model developed in the EUCLEIA project,
the weather@home distributed attribution project model and the ASF20C seasonal hindcast ensemble have been used. These
three models are uncoupled and forced with observations of historical Sea Surface Temperature (SST) fields and estimates of
SST fields as they might have been in a counterfactual climate without anthropogenic climate change. Finally, we used the
coupled IPSL-CM6A-LR low-resolution CMIP6 ensemble. The GFDL-CM3 and MPI-ESM models that did not have daily
data were not used for the extreme heat analysis. Given that for the FWI daily data of relative humidity (RH), temperature,
precipitation and wind speed are necessary, the list is shortened to CanESM2, CESM1-CAMS, EC-Earth, IPSL-CM6A-LR and
weather@home (HadAM3P) for that part of the analysis.
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name context resolution members time reference

ASF20C seasonal T255L91 (0.71°) 51 19012010  Weisheimer et al. (2017)
hindcasts
CanESM2 CMIP5 2.8° 50  1950-2099 Kirchmeier-Young et al. (2017)
CESM1-CAMS CMIP5 1° 40  1920-2100 Kay et al. (2015)
CSIRO-Mk3-6-0  CMIP5 1.9° 30 1850-2100 Jeffrey et al. (2013)
EC-Earth CMIP5 T159 (1.1°) 16 1860-2100 Hazeleger et al. (2010)
GFDL-CM3 CMIPS 2.0° 20 1920-2100  Sun et al. (2018)
GFDL-ESM2M  CMIP5 2.0° 30 1950-2100 Rodgers et al. (2015)
HadGEM3-A attribution N216 (0.6°) 15 1960-2015 Ciavarella et al. (2018)
IPSL-CM6A-LR  CMIP6 2.5%x1.5° 32 1950-2019  Boucher et al. (2020)
MPI-ESM CMIP5 1.9° 100 1850-2099 Mabher et al. (2019)
weather@home attribution N96 (1.8°) 1520 x 2 1987-2017  Guillod et al. (2017)

Table 1. List of climate model ensembles used.

2.4 Statistical methods

Changes in the frequency of extreme events are calculated by fitting the data to a statistical distribution. In this study the
temperature extremes and fire risk-related variables (FWI, MSR) are assumed to follow a GEV distribution, while the low
precipitation values are fitted using a Generalized Pareto Distribution (GPD).

The GEV distribution is:

. —1/¢
—(1+5z0“> ] (1)

where x the variable of interest, e.g., temperature or precipitation, —oo < u < 00, 0 > 0, —oo < & < oo. Here, 1 is the location

P(x) =exp

parameter, o is the scale parameter, and £ is the shape parameter. The shape parameter determines the tail behaviour: a negative
shape parameter gives an upper bound to the distribution. The scale parameter corresponds to the variability in the tail.
The GPD gives a 2-parameter description of the tail of the distribution above a threshold, where the low tail of precipitation

is first converted to a high tail by multiplying the variable by —1. The GPD is then described by:

(=1/¢)
H(u_x):l_(1_5x> , @)

g

with x the temperature or precipitation, u the threshold, o the scale parameter, and £ the shape parameter determining the
tail behaviour. For the low extremes of precipitation, the fit is constrained to have zero probability below zero precipitation
(€ < 0,0 < uf). Calculations have been done on the lowest 20% and 30% of the data, which gives a first-order estimate of the
influence of using more or less extreme events. We cannot use fewer points as the fits do not converge anymore, and using

more than 30% does not qualify as the ‘lower tail’.
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Drought is particularly difficult to model using the existing extreme value framework (Cooley et al., 2018). While minima
can be modelled by multiplying by —1 (Coles, 2001), the applicability of the underlying extreme value theory assumptions
still needs to be checked. In the case of low precipitation, autocorrelations are a concern. In southeastern Australia, these serial
autocorrelations are approximately r ~ 0.2, so although non-zero, do not dominate the drought characteristics. Despite these
theoretical limitations, in practice the diagnostic plots show the Generalised Pareto models explain the data reasonably well.
In general this is a difficult problem, and the statistical extremes community are still developing the solutions necessary for
modelling drought events (Naveau et al., 2016).

To calculate a trend in transient data, some parameters in these statistical models are made a function of the 4-yr smoothed
global mean surface temperature (GMST) anomaly, 7”. The covariate-dependent function can be inverted and the distribution
evaluated for a given year, e.g., a year in the past (with 7" = T)) or the current year (" = T7). This gives the probabilities for
an event at least as extreme as the observed one in these two years: py and p;, or expressed as return periods 7o = 1/pg and
71 = 1/p1. The change in probability is called the Probability Ratio (PR): PR = p;1/po = 10/71.

For temperature we assume that the distribution shifts with GMST: p = pg + oT” or u = ug + oT”, and 0 = oo with « the
trend that is fitted together with 19 and 0. The shape parameter £ is assumed constant. For drought and FWI related variables

we assume the distribution scales with GMST, the scaling approximation (Tebaldi and Arblaster, 2014). In a GEV fit this gives:
1= noexp(aT’ /o), = doexp(al’ /o),

and in a GPD fit

u=ugexp(aT’ /ug),o = ogexp(aT’ /1),

with fit parameters o, and &. The threshold v is determined with an iterative procedure and the shape parameter £ is again
assumed constant.

For all fits we also estimate 95% uncertainty ranges using a non-parametric bootstrap procedure, in which 1000 derived
time series generated from the original one by selecting random data points with replacement are analysed in exactly the same
way. The 2.5 and 97.5 percentile of the 1000 output parameters (defined as 100¢/1001 with ¢ the rank) are taken as the 95%
uncertainty range. For some models with prescribed SSTs or initial conditions the ensemble members are found to not be
statistically independent, defined here by a correlation coefficient r > 1/e with e ~ 2.7182. In those cases the same procedure
is followed except that all dependent time series are entered together in the bootstrapped sample, analogous to the method
recommended in Coles (2001) to account for temporal dependencies.

When using a GEV to model tail behaviour, note that taking the spatial average of the annual maxima, does not have the
same statistical justification as taking the annual maximum of the spatial average (Coles, 2001). Given this, the impact of the
order of operations in the event definition was examined. For heat, we compared the annual time series for the event definition
we use, first taking the annual maximum and next the spatial average, to the definition with the order reversed, which can
be approximated with a GEV. The Pearson correlation was r = 0.95, which is likely due to strong spatial dependence and the
concentration of heatwaves at the peak of the seasonal cycle. Therefore in practice, an approximation with a GEV is not entirely

unsuitable for temperature, but caution should be exercised. For the FWI the order of operations makes a difference. Indeed
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we find that the whole distribution is not described well by a GEV for most models. In those cases we take block maxima over
5- or 10-ensemble member blocks, effectively looking only at the most extreme events, until the GEV fit agrees with the data
points in the return time plot, as expected from taking block maxima.

We evaluate all models on the fitting parameters. For the extremes, we check whether the fit parameters of the distribution
from model data agree within uncertainties with those of the observations. We allow for an overall bias correction, additive for
temperature, multiplicative for precipitation and Fire Risk variables.

Finally, observations and all models that pass the evaluation test are combined to give a synthesized attribution statement.
To obtain a single synthesized attribution statement we first combine the observational results. The spread of the observed
estimates stems from the representation uncertainty, and this is added as an independent uncertainty to the natural variability.
These two results are then combined for the observations. In the synthesis figures (Figs. 6, 11, 12 and 16) the solid light blue
bars indicate uncertainties due to natural variability, the black outline boxes show natural variability and the consolidated value
for observations (reanalyses) are drawn in dark blue.

Next, we combine the results from the model-based analysis, which is the main attribution step. We compare the spread
of the model results to the spread expected by the natural variability by computing the x?/dof statistic. If x2/dof is greater
than one, we add the model spread in quadrature to the natural variability as they are independent. In the synthesis figures the
model spread is denoted by the white boxes. We next compute a weighted mean by weighing the models by the inverse square
of their uncertainties due to natural variabilities, which minimises the uncertainties in the mean. The bright red bar in these
figures indicates the total uncertainty of the models. This total uncertainty consists of a weighted mean using the (uncorrelated)
uncertainties due to natural variability plus an independent common model spread added to the uncertainty in the weighted
mean if x%/dof > 1.

Finally, observations and models are combined into a single result in two ways if they seem to be compatible. Firstly, we
neglect model uncertainties beyond the model spread and compute the weighted average of models and observations: this is
indicated by the magenta bar. As model uncertainty can be larger than the model spread, secondly, we also show the more
conservative estimate of an unweighted average of observations and models, indicated by the white box around the magenta

bar in Figs. 11 and 12.

3 Extreme heat
3.1 The heat of 2019/20

Australia started 2019 during an extreme summer that was the country’s hottest on record in terms of both seasonal mean
and mean maximum temperatures. Both variables broke the previous records set in the 2012/13 season by almost one degree.
The summer mean maximum temperature for the 2018/19 season was 2.61 °C warmer than the 1961-1990 average. However,
many of the temperature records set in early 2019 were eclipsed by the extreme heat during December 2019. This was the
hottest month on record in terms of national mean and mean maximum temperature anomalies, respectively at 3.21 and 4.15

°C above the 1961-90 December average. The peak of the heat occurred in the week ending the 24th December, which was the
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country’s hottest week on record, at a national mean maximum temperature of 40.5 °C. During this week, the highest national
mean maximum temperature was recorded on the 17th at 41.9 °C, 1 °C higher than the previous record, which was set the
previous day. In terms of national mean maximum temperatures, eight of the ten hottest days on record occurred in December
2019. While January 2020 was not as extreme as December 2019, it still ranked as the third warmest January on record, with
many individual stations in New South Wales observing their highest January temperature on record on the 4th or 5th of the
month (Bureau of Meteorology: Australia in January 2020).

This record summer occurred, at least in part, in Australia’s warmest and driest year on record and directly after the current
hottest summer on record (2018/2019 was 1.52 °C above the seasonal average). Overall, Australia has warmed by 1 °C since
1910, however, most of this warming has occurred since 1950. The frequency of extreme heat events in Australia outnumber ex-
treme cool events by 12:1 (Lewis and King, 2015), and the frequency of heatwaves have also increased since 1950 (Perkins and
Alexander, 2013). Increasing trends in heatwave intensity, frequency and duration are projected throughout the 21st Century
(Cowan et al., 2014), with a clear link between global warming thresholds and overall heatwave changes (Perkins-Kirkpatrick

and Gibson, 2017).
3.2 Temporal Event Definition

For this analysis, we choose an event definition that represents the impacts of extreme heat on the fire risk: the annual (July-
June, in order to ensure a continuous summer season) maximum of a 7-day moving average application to daily maximum
temperatures, TX7x. Therefore, in this section of the study we aim to answer the question of whether and by how much the
probability of a 7-day average maximum temperature at least as high as observed in the study region in 2019 has changed as a

result of anthropogenic climate change.
3.3 Observational temperature data and methods

We use a number of datasets developed using independent methodologies to assess observed daily maximum temperatures. The
first is the Berkeley Earth climate analysis (Rohde et al., 2013), a gridded dataset derived statistically from available station
data. Although maximum daily temperature data is available from 1880 onwards, here we only use data from 1910 onwards,
since the use of Stevenson huts in Australia was only standardised throughout from this time and earlier measurements are likely
biased high by several degrees (Trewin, 2013). Berkeley Earth uses large decorrelations lengths that are more appropriate for
annual than daily data. The next is the Australian Water Availability Project (AWAP) analysis 1910-now, which is constructed
by imposing anomalies from station data on a high-resolution climatology. This is augmented by a simple average of a set
of quality-controlled Australian Climate Observations Reference Network — Surface Air Temperature (ACORN-SAT) stations
(Trewin, 2013). These include a large number of coastal stations. The ACORN-SAT daily analysis fields were not yet available
at the time of writing.

We also considered reanalysis data, both long-term reanalyses that are based only on Sea Surface Temperature (SST) and
sea-level pressure (SLP), the NOAA Twentieth Century Reanalysis version 3 (20CRv3 Slivinski et al., 2019) and the ECMWF
Coupled ReAnalysis of the Twentieth Century 1900-2010 (CERA-20C Laloyaux et al., 2018). Finally we used the Japanese
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Figure 3. The highest 7-day running mean of daily maximum temperature of the July—June year in (top) Berkeley Earth and (bottom) the

AWAP analysis. The green line indicates a 10-yr running mean.

ReAnalysis (JRA-55 Kobayashi et al., 2015), a reanalysis product from JMA using 4D Variational data assimilation in their
TL319 global spectral model spanning 1958-2019 at the time of writing.

A comparison of the observational analyses reveals striking differences (Fig. 3). The trend in the Berkeley Earth analysis is
higher than in the AWAP analysis and high extremes are suppressed, most notably in 1938/39. We looked into this event on
8-14 January 1939 in more detail and ACORN-SAT station data confirms its reality. It even appears in the 20CRv3 reanalysis,
which apparently captures the extraordinary circulation that led to the very high temperatures in southeastern Australia that
week without assimilating near-surface temperatures. We therefore disregard the Berkeley analysis for the heat extremes in
the region of this study. The CERA-20C reanalysis also does not capture this event, which is very relevant for the statistical
distribution of heat extremes, so we also do not consider it further.

As described in section 2.4, the trend and return period are calculated using the properties of the fit of a Generalized Extreme
Value (GEV) distribution, in which the location parameter is a linear model of smoothed Global Mean Surface Temperature
(GMST). As the regional event definition has not been selected on the basis of high temperatures we include the year 2019/20

in the fit when available in the datasets. We note that extreme heat GEV distributions have a negative shape parameter; an upper
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Figure 4. GEV fit to the AWAP TX7x averaged over the bushfire region. The position parameter p is assumed linearly dependent on the
smoothed GMST and the scale and shape parameters constant. Top: observations (blue symbols), location parameter p (thick line) and the
6 and 40 yr return values (thin lines). Bottom: return time plot for the climates of 1900 (blue) and 2019 (red), the purple line denotes the

2019/20 event.

bound exists for the distribution. Hence if the observed 2019/20 event lies above the upper bound of the distribution in 1900,
the probability of the event occurring without the GMST trend is zero, and the increase in likelihood due to global warming is

formally infinite, although the 95% uncertainty interval usually has a finite lower bound.
3.4 Observational analysis: return time and trend

In the AWAP series the warmest 7-day period so far for the regional index in 2019/20 is 35.9 °C, the third-highest value after
1938/39 and 2018/19. It has a return time of about 8 yr (5 ... 35 yr). For the reanalyses and model results, which have biases,
we use a rounded return time of 10 yr. The GEV fit of the AWAP data gives a return time of 85 yr (35 ... oo yr) in 1900 (see
Fig. 4, which implies that the probability has increased by a factor of about 11 (3 ... oco) from 1900 to 2019 in this statistical
model. The temperature of TX7x has increased by about 1.7 °C (0.8 ... 2.6 °C) in this period. JRA-55 tells a similar story,
with a significant temperature increase of 1.5 (1.3-3.4) °C extrapolated to 1900-2019.

12
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Figure 5. Left: scale parameter o (K) in GEV fits of TX7x in observations, reanalyses and climate models. Right: same for the shape

parameter &.

3.5 Model evaluation

We consider a set of eight model ensembles that had daily maximum temperatures available to carry out the attribution analysis.
To investigate whether the models represent extreme heat well we compare the fit parameters of the tail of the TX7x distribution
of the models with those of the observations. In this GEV fit we take the smoothed observed global mean temperature as
covariate. The results are shown in Fig. 5. This shows that most models overestimate the scale parameter o. This corresponds
to the models having too much variability in hot weeks. The same problem was found in the Mediterranean (Kew et al., 2019)
and northwestern Europe (Vautard et al., 2020). The only exception is the CESM1-CAMS5 model, which has too small a scale
parameter. This model also has a shape parameter £ that is incompatible with the fit to observations, all other models agree
with the observations in this parameter.

The discrepancy implies that we cannot give quantitative results for the attribution of heat extremes in southeastern Australia,
as the heat extremes in the climate models are too different from the observed heat extremes. This affects especially the change
in probability, which depends strongly on the variability. For the trend estimates the influence of this shortcoming is smaller.

We continue with all models apart from CESM1-CAMS, keeping these limitations in mind.
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Figure 6. Synthesis plots of the Probability Ratio PR (left) and change in temperature AT (right) between 1900 and 2019 for the observations

(blue), models (red). We do not attempt a synthesis as the models disagree too much with the observations.

3.6 Multi-model attribution and synthesis

We computed trends in the models by either comparing the actual climate 1987-2017 to an estimate of a counterfactual climate
of the same period with anthropogenic emissions (weather@home) or by fitting a scaled distribution to the transient data in
the same way as for the observational estimates, using the observed smoothed GMST (all other models) as covariate. This
revealed two outliers: the ASF20C ensemble has a negative trend over the full 1901-2010 period, so we only use data from
1960 onwards.

Fig. 6 summarises the change in probability and in intensity since 1900 for the 2019 event (observations) and a 10-yr event
(the remaining seven models). The observations indicate a 1 to 2 °C temperature increase, with a return time of about 10 years.
In contrast, the models only simulate about 1 °C.

Several observational and reanalysis datasets (ACORN stations, CERA-20C) and one model (ASF20C) display what appears
to be a non-stationary relationship between TX7x and GMST; as the starting time of a linear regression between them is varied
from 1910 onwards, the best-estimate trend increases. For the ACORN stations this is probably due to the varying station
coverage, with the trend over the stations active over the early part smaller, maybe more coastal, than over the later part.
CERA-20C was excluded for not reproducing the 1929 event. ASF20C is initialised from ocean reanalyses. Due to increasing
numbers and quality of observations over the 20th century these change from closer to the model climatology to closer to

the real state. This gives time-varying initialisation shocks, which is equivalent to a bias in the trend. Finally in the period
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Figure 7. As Fig. 6 but using only data starting in 1950.

before 1950 the global mean temperature was affected as much by volcanic and other natural forcings forcings as it was by
greenhouse gases, with possibly different effects from the anthropogenic forcings on circulation. We therefore also show a
figure with results from 1950, Fig. 7, for which more consistent observations are available, noting that this is a better estimate
of the greenhouse-gas driven trend with better observations than the whole period since 1900.

There are two interpretations of this discrepancy: either the observations are influenced by another driver than anthropogenic
climate change that caused the rapid rise in extreme temperatures or the models have problems simulating the response of
external forcing on these events and their related processes (or a combination of these two). As long as it is unknown which of
the two explanations is correct we can only quote a lower bound on results, keeping in mind that the true increases could be
much higher.

The Probability Ratios are very roughly ten in the observational datasets, with lower bounds as low as a factor two increase
in probability (Fig. 6). The model results are heavily influenced by the overestimated variability: the high variability in the
model, together with the low trends, induces lower probability ratios than in the observations. As there is no overlap between
the observed and simulated values we do not attempt to synthesise the results but only quote a lower bound. The spread in the
models is compatible with their estimates of natural variability (x?/dof =~ 1) so we compute a weighted average. This has an

increase in probability between 1900 and 2019 of a factor three with a lower bound of a factor two.
3.7 Conclusions extreme heat

We analysed the highest 7-day mean maximum temperatures of the year averaged over the region south of 29 °S between the

Great Dividing Range and the sea, the area with most intense bushfires in 2019/20. Observations show that a heatwave as rare
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as observed in 2019/20 would have been 1 to 2 °C cooler at the beginning of the 20th century. Similarly, a heatwave of this
intensity would have been less likely by a factor of about 10 in the climate around 1900.

While eight climate models simulate increasing temperature trends they all have some limitations for simulating heat ex-
tremes: the variability is in general too high and the trend in these heat extremes is only 1 °C. We can therefore only conclude
that anthropogenic climate change has made a hot week like the one in December 2019 more likely by at least a factor of two.
Given the larger trend in observations in the models we suspect that climate models underestimate the trend due to climate
change. Coupled with the high variability of the models, the increase in the likelihood of such an event to occur is likely much

higher than the models simulate.

4 Meteorological drought
4.1 Temporal Event Definition

Next we analyse meteorological drought, that is, low precipitation. The formulation of the Fire Weather Index only considers
precipitation over the last 52 days, as a proxy for this we also analyse the driest month in the fire season September—December.
December 2019 was one of the driest months on record in our study region in southeastern Australia since 1900 (third in
GPCC, ninth in AWAP). Using monthly data means we can utilise the models described above, thus sampling model spread as
well as possible.

The January—December annual mean 2019 was the driest year on record since 1900 (Bureau of Meteorology, Annual Climate
Statement 2019). This was also the case in our study region in southeastern Australia, which could play a role in the bushfire
risk that is not parameterised by the FWI. The two previous years had also been very dry, but it is unclear whether this still

affects the 2019/20 bushfires. We therefore also analyse annual mean drought but not multi-year drought.
4.2 Observational precipitation data and methods

We considered three observational datasets of monthly precipitation: GPCC v18 1900-2018 (Schneider et al., 2018b) extended
with the monitoring analysis (Schneider et al., 2018a) up to November 2019 and the first guess analysis (Ziese et al., 2011)
up to January 2020, CRU TS 4.03 1901-2017 (Harris et al., 2014) and AWAP 1900-January 2020 (Bureau of Meteorology
data). As the distributions of annual mean precipitation and the driest month in the fire season are both not described well by a
Gaussian we use a GPD fit to the lowest 20% or 30% for the observations, demanding that it has a lower bound (¢ < 0) that is

larger than zero (0 < —&wu) so that there is no probability for negative precipitation.
4.3 Observational analysis: return time and trend

For the annual mean low precipitation analysis the fit for AWAP data using the lowest 20% is shown in Fig. 8. The year 2019 is
not included in the fit. This fit shows a significant trend towards more dry extremes over the period 1900-2018. The return time

of 16 yr (3 ...550 yr) is the lowest in the observational datasets. The fit should be independent of the threshold, but this is not
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Figure 8. GPD fit to the AWAP estimate of annual mean precipitation in the bushfire region. The position and scale parameters depend

exponentially on the observed smoothed global mean surface temperature such that their ratio is constant. The scale parameter is forced to be

negative and the cut-off zero or higher. Left: using the lowest 20%. Right: using the lowest 30%. Top: observations (blue symbols), location

parameter g (thick line) and the 6 and 40 yr return values (thin lines). Bottom: return time plot for the climates of 1900 (blue) and 2019 (red),

the purple line denotes the 2019/20 event.

the case: whereas the lowest 20% show a significant downward trend, the GPD fit to the lowest 30% has an upward trend that

is not significant at p < 0.05 (two-sided) in the AWAP dataset (Fig. 8, right). The lowest 10% does not contain enough data to
fit a GPD. We report both the 20% and 30% choices in the following.

The return time of the low 2019 precipitation depends strongly on the observational dataset and the cut-off in the GPD fit

and ranges from 25 yr (3 ...4000 yr) in GPCC 30% to infinity in the AWAP fits with large uncertainty ranges starting at 3 yr,

with GPCC 20% intermediate at 120 yr (3 ...3000 yr). The uncertainty ranges are in fact more similar than the best fit values.

Also given that it was the lowest value